Winter 2019/20

Universität Hamburg Janko Latschev Pavel Hájek

Symplectic Geometry

Problem Set 9

1. Let $(E, J) \to (\Sigma, j)$ be a complex vector bundle over a Riemann surface. A connection on E is an \mathbb{R} -linear map

$$\nabla: \Gamma(E) \to \Gamma(\operatorname{Hom}_{\mathbb{R}}(T\Sigma, E))$$

such that for all $f: \Sigma \to \mathbb{R}$ and $s \in \Gamma(E)$ we have

$$\nabla(f \cdot s) = df \cdot s + f \cdot \nabla s.$$

Prove:

- a) The difference $A = \nabla \nabla'$ of two connections is a $C^{\infty}(\Sigma)$ -linear map $A : \Gamma(E) \to \Gamma(\operatorname{Hom}_{\mathbb{R}}(T\Sigma, E)).$
- **b)** For every connection ∇ on E the operator

$$D := \nabla + J \circ \nabla \circ j \qquad (\text{ so } Ds = \nabla s + J \circ (\nabla s) \circ j)$$

is a real linear Cauchy-Riemann operator on (E, J).

- c) If ∇ is a complex connection, meaning that $\nabla J = 0$ (which is equivalent to $\nabla(Js) = J(\nabla s)$ for all $s \in \Gamma(E)$), then the operator D from part **b**) is a complex linear Cauchy Riemann operator.
- d) The difference B = D D' of two real linear Cauchy-Riemann operators is a $C^{\infty}(\Sigma)$ -linear map $B : \Gamma(E) \to \Gamma(\overline{\text{Hom}}_{\mathbb{C}}(T\Sigma, E)).$
- **2.** (holomorphic line bundles on surfaces) Prove the following assertions:
 - a) The cotangent bundle $K_{\Sigma} = T^*\Sigma$ of a Riemann surface (Σ, j) is a holomorphic line bundle. It is called the *canonical bundle* of Σ .

b) Define $U \subseteq \mathbb{C}P^1 \times \mathbb{C}^2$ as the subset

$$U := \{ ([z], w) \mid \exists \lambda \in \mathbb{C} : w = \lambda z, \}.$$

Then with the obvious projection $\pi : U \to \mathbb{C}P^1$, $\pi([z], w) = [z]$ this is a holomorphic line bundle over $\mathbb{C}P^1$, called the *universal line bundle* over $\mathbb{C}P^1$.

c) Let $\mathcal{U}_i := \{ [z_0 : z_1] | z_i \neq 0 \} \subseteq \mathbb{C}P^1$ be the two open subsets giving the standard covering of $\mathbb{C}P^1$ by charts For every $k \in \mathbb{Z}$ we can define a holomorphic line bundle $E_k \to \mathbb{C}P^1$ by gluing the trivial bundles $E^0 = \mathcal{U}_0 \times \mathbb{C}$ and $E^1 = \mathcal{U}_1 \times \mathbb{C}$ via the transition map

$$\psi_k : E^0 |_{\mathcal{U}_0 \cap \mathcal{U}_1} \to E^1 |_{\mathcal{U}_0 \cap \mathcal{U}_1}$$
$$([z_0 : z_1], v) \mapsto \left([z_0 : z_1], \left(\frac{z_0}{z_1} \right)^k \cdot v \right).$$

Then the bundle $E_k \to \mathbb{C}P^1$ admits nonzero holomorphic sections $s : \mathbb{C}P^1 \to E_k$ if and only if $k \ge 0$, in which case the dimension of the \mathbb{C} -vector space of holomorphic sections is k + 1.

- d) To which E_k do the canonical bundle $K_{\mathbb{C}P^1}$ and the universal bundle U correspond?
- **3.** Let $A : X \to Y$ be a bounded linear operator between Banach spaces with a bounded right inverse $B : Y \to X$. Prove that there is an $\epsilon > 0$ such that every bounded linear operator $C : X \to Y$ with $||A C|| < \epsilon$ also has a bounded right inverse.
- 4. Let X, Y and Z be Banach spaces, $D: X \to Z$ a Fredholm map (so it has finitedimensional kernel, closed image and finite-dimension cokernel) and $A: Y \to Z$ a bounded linear map. Prove that if

$$L := D + A : X \oplus Y \to Z$$

is surjective, then the projection Π : ker $L \to Y$, $\Pi(x, y) = y$ is Fredholm with ker $\Pi \cong \ker D$ and coker $\Pi \cong \operatorname{coker} D$.

5. Let X, Y and Z be Banach spaces, $A : X \to Y$ a bounded linear map and $K: X \to Z$ a compact linear map. Moreover, we assume that there are constants $C_1, C_2 > 0$ such that for all $x \in X$ we have

$$||x||_X \le C_1 ||Ax||_Y + C_2 ||Kx||_Z.$$

Prove:

- **a)** The kernel of A is a finite-dimensional linear subspace of X. Hint: This is equivalent to the fact that the unit ball in this subspace is compact.
- **b)** The image of A is closed in Y.