Winter 2019/20

Universität Hamburg Janko Latschev Pavel Hájek

Symplectic Geometry

Problem Set 8

- **1.** Consider a Kähler manifold (M, ω, J) and suppose that $\varphi : M \to M$ is an isometric involution $(\varphi^2 = \mathrm{id})$ of the corresponding Kähler metric $g_J = \omega(., J.)$ which is antiholomorphic, i.e. such that $\varphi_* \circ J = -J \circ \varphi_*$.
 - a) Prove that φ is antisymplectic, i.e. $\varphi^* \omega = -\omega$.
 - b) Prove that the fixed point set of φ is a totally geodesic submanifold for the metric g_J .
 - c) Prove that the fixed point set is a Lagrangian submanifold of (M, ω) .
 - d) What is the fixed point set of $\varphi : \mathbb{C}P^n \to \mathbb{C}P^n$, given in homogeneous coordinates as complex conjugation

$$\varphi([z_0:\ldots:z_n])=[\bar{z}_0:\ldots:\bar{z}_n]?$$

Remark: Note that if $X \subset \mathbb{C}P^n$ is a smooth complex submanifold given as the zero set of finitely many homogeneous polynomials with real coefficients, then φ also induces an antiholomorphic and antisymplectic involution on X. This gives many interesting examples.

2. Prove that $(\mathbb{R}^4, \omega_{st})$ can be embedded symplectically into its subset

$$Z_L(1) := \{ (x_1, y_1, x_2, y_2) \in \mathbb{R}^4 : x_1^2 + x_2^2 < 1 \} \subseteq \mathbb{R}^4.$$

This shows that in the statement of Gromov's Nonsqueezing theorem it is important to use the symplectic cylinder, defined as the product of a symplectic disk with \mathbb{R}^{2n-2} . **3.** Let (M, ω) be a closed symplectic manifold. In class, we introduced the Hofer metric on $\operatorname{Ham}(M, \omega)$ by defining the length of a path ϱ_t in $\operatorname{Ham}(M, \omega)$ starting at the identity and generated by the time-dependent Hamiltonian $H: M \times [0, 1] \to \mathbb{R}$ as

length(
$$\rho_t$$
) = $\int_0^1 ||H_t||_{\infty} dt$, where $||H_t||_{\infty} = \max_M H_t - \min_M H_t$,

and then setting

$$d(\varphi,\psi) := \inf \{ \operatorname{length}(\varrho_t) : \varrho : [0,1] \to \operatorname{Ham}(M,\omega), \varrho_0 = \operatorname{id}_M, \varrho_1 = \varphi^{-1}\psi \}.$$

a) Prove the assertions made in class that this metric is biinvariant, i.e.

$$d(\varphi, \psi) = d(\theta\varphi, \theta\psi) = d(\varphi\theta, \psi\theta)$$

for any $\theta \in \operatorname{Ham}(M, \omega)$.

b) Consider $M = S^2 \subseteq \mathbb{R}^3$ with its standard volume form σ and compute the length of the path $\varphi : [0,1] \to \operatorname{Ham}(S^2,\sigma)$ where φ_t is rotation by $2\pi t$ around the z-axis.