Winter 2019/20

Universität Hamburg Janko Latschev Pavel Hájek

Symplectic Geometry

Problem Set 6

- 1. Let (W, ξ) be a coorientable contact manifold, i.e. one which admits global contact forms. Prove that a contact vector field Y on W will be the Reeb vector field for some contact form α defining ξ if and only if Y is everywhere transverse to ξ .
- 2. Let $W \subseteq (M, \omega)$ be a regular level set of the function $H : M \to \mathbb{R}$. Assume that W is also a hypersurface of contact type, so there exists a vector field Y defined near W satisfying $Y \pitchfork W$ and $L_Y \omega = \omega$. We have seen that $\alpha = (\iota_Y \omega)|_W$ is a contact form on W. Prove the assertion made in class that the Reeb vector field of α and the restriction of the Hamiltonian vector field X_H to W are proportional.
- **3.** (Legendrian submanifolds) Let (W, ξ) be a contact manifold of dimension 2n + 1.
 - a) Suppose S ⊆ W is a submanifold everywhere tangent to ξ. Prove that dim S ≤ n.
 Note: If dim S = n, then S is called a Legendrian submanifold of W.
 - b) Prove that every Legendrian submanifold $S \subseteq W$ has a neighborhood which is contactomorphic to a neighborhood of the zero section in $(J^1S, \ker(dz - \lambda_{\operatorname{can}}))$ (which is obviously an example of a Legendrian submanifold). *Hint: Try to immitate the proof for Lagrangian submanifolds of symplectic manifolds. At some point Gray's stability theorem might be helpful.*
- 4. (Legendrian knots) We consider the standard contact structure $\xi = \ker(dz ydx)$ on \mathbb{R}^3 .
 - a) Prove that every smooth curve $\gamma : [0,1] \to \mathbb{R}^2$, $\gamma(t) = (x(t), y(t))$ admits a unique lift $\tilde{\gamma} : [0,1] \to \mathbb{R}^3$ which starts at $\tilde{\gamma}(0) = (x(0), y(0), 0)$ and is tangent to ξ .
 - b) Which closed curves in the plane lift to closed curves in \mathbb{R}^3 ?
 - c) Compute the lift of $\gamma(t) = (\sin 2\pi t, \sin 4\pi t)$ explicitly and sketch its image in \mathbb{R}^3 .