Winter 2019/20

Universität Hamburg Janko Latschev Pavel Hájek

Symplectic Geometry

Problem Set 5

- 1. Prove that a contact manifold of dimension 2n + 1 with n odd (i.e. of dimension 4m 1) has a preferred orientation determined by the contact structure.
- **2.** Consider the following three contact forms on \mathbb{R}^3 :
 - $\lambda_1 = dz ydx$, where (x, y, z) are cartesian coordinates,
 - $\lambda_2 = dz + xdy$, where (x, y, z) are cartesian coordinates,
 - $\lambda_3 = dz + r^2 d\varphi$, where (r, φ) are polar coordinates in \mathbb{R}^2 , and z is the third coordinate.
 - a) Picture these contact structures and their Reeb vector fields (these will be defined on Tuesday).
 - **b)** Prove that $(\mathbb{R}^3, \text{Ker } \lambda_i)$ are pairwise contactomorphic, i.e. there are diffeomorphisms $\Phi_{ij} : \mathbb{R}^3 \to \mathbb{R}^3$ and functions $\rho_{ij} : \mathbb{R}^3 \to \mathbb{R}$ such that $\Phi_{ij}^*(\lambda_i) = \rho_{ij}\lambda_j$.
 - c) Prove that for any $i \in \{1, 2, 3\}$ there is a contactomorphism of $(\mathbb{R}^3, \text{Ker } \lambda_i)$ with a bounded subset $B \subset (\mathbb{R}^3, \text{Ker } \lambda_i)$.
- **3.** Let (M^{2n}, ω) be symplectic and let $W \subset M$ by a smooth hypersurface.
 - a) Prove that every point $x \in W$ has a neighborhood $U \subset M$ such that $W' = W \cap U$ is a hypersurface of contact type, i.e. there exists a vector field Y defined on a neighborhood $U' \subseteq U$ of W' such that Y is transverse to W' and $L_Y \omega = \omega$.
 - b) In fact, if U is sufficiently small, the normal bundle of $W' = W \cap U$ is trivial, and one can find such a vector field Y giving the normal bundle either of the two possible orientations.

- 4. Let (M^{2n}, ω) be symplectic and let $H : M \to \mathbb{R}$ be a function. Suppose $W := H^{-1}(0) \subset M$ is a smooth **closed** oriented hypersurface of contact type, i.e. there is a vector field Y defined near W and transverse to W such that $L_Y \omega = \omega$. As we have seen in class, this means that $\alpha := (\iota(Y)\omega)|_W$ is a contact form on W.
 - a) Assuming n > 1, prove that there is no closed 1-form β on W such that $\beta(X_H) > 0$ at all points of W. Hint: You may want to use Stokes' Theorem.
 - b) Use this to prove that, if n > 1, any other vector field Z also transverse to W and satisfying $L_Z \omega = \omega$ defines the same normal orientation of W as Y.
 - c) What happens for n = 1?
- 5. Consider a closed coisotropic submanifold $W \subset (M, \omega)$ of a symplectic manifold, and suppose that $W = H^{-1}(c)$ for a smooth function $H : M \to \mathbb{R}^k$ which has $c \in \mathbb{R}^k$ as a regular value. We denote by H_1, \ldots, H_k the components of H.
 - a) Prove that the subbundle ker $\omega|_W \subset TW$ is spanned pointwise by the Hamiltonian vector fields X_{H_1}, \ldots, X_{H_k} .
 - **b)** Prove that $[X_{H_i}, X_{H_j}]|_W = 0$ for all $1 \le i, j \le k$. By Frobenius' Theorem, this implies that ker $\omega|_W$ is integrable, i.e. tangent to a foliation.
 - c) Suppose that the Hamiltonian flows $\varphi^{X_{H_i}}$ are 1-periodic, so that together these flows combine to a free action of the torus T^k on W. Prove that the quotient space W/T^k inherits a symplectic structure from M.
 - d) Prove that for $W = S^{2n-1} \subset (\mathbb{R}^{2n}, \omega_{st})$, viewed as a level set of the function $H(z) = \frac{1}{2} ||z||^2$, part c) applies with k = 1, and the quotient space is $\mathbb{C}P^{n-1}$.