DIFFERENTIAL TOPOLOGY

Problem Set 9

- **1.** Prove that the manifolds $G_{k,N}$ and $G_{N-k,N}$ are diffeomorphic.
- **2.** Let $E \longrightarrow B$ be a vector bundle of rank k over a manifold of dimension n.
 - a) Prove that if k > n, then there exists a bundle $E' \longrightarrow B$ of rank k 1 such that

 $E \cong E' \oplus \underline{\mathbb{R}}.$

- b) Show by example that in general E' is not uniquely determined by E.
- c) Prove that if k > n + 1, then E' is uniquely determined by E.
- **3.** We consider real vector bundles $E \longrightarrow S^n$ for $n \ge 1$. Any such vector bundle is trivial over the upper and lower hemispheres

$$S_{+}^{n} := \{ x \in S^{n} \mid \pm x_{n+1} \ge 0 \} \subset S^{n} \subset \mathbb{R}^{n+1}.$$

In particular, it is completely described by the transition map

$$g: S^{n-1} = S^n_+ \cap S^n_- \to \operatorname{GL}(k, \mathbb{R})$$

between the two trivializations.

- a) Using the fact that every vector bundle over a compact manifold admits a Riemannian metric, prove that the transition map can be arranged to take values in the subgroup $O(k) \subset GL(k, \mathbb{R})$, and even in SO(k) for $n \geq 2$.
- b) Let $n \ge 2$. Prove that the transition maps g and g' for two bundles E and E' of the same rank are homotopic if and only if the bundles are isomorphic. In particular, for any $k \ge 1$ we have

$$\operatorname{Vect}_k(S^n) \cong \operatorname{Vect}_k^{\operatorname{or}}(S^n) \cong \pi_{n-1}(\operatorname{SO}(k)).$$

- c) Describe a bijective map from $\operatorname{Vect}_2(S^2)$ to \mathbb{Z} .
- d) Which integer does the tangent bundle of S^2 correspond to under your map? Give a pictorial proof of your answer.