DIFFERENTIAL TOPOLOGY

Problem Set 5

- 1. Use Sard's theorem or Sard's theorem for families to prove precise versions of each the following statements:
 - **a)** Most pairs of lines in \mathbb{R}^n with $n \geq 3$ do not intersect.
 - **b)** If $f : \mathbb{R} \to \mathbb{R}$ is a C^1 function, then most horizontal lines in \mathbb{R}^3 are not tangent to its graph.
- **2.** Suppose $f_1: M_1 \to N$ and $f_2: M_2 \to N$ are smooth maps between manifolds. Recall that we defined transversality for such maps as

$$f_1 \pitchfork f_2 : \iff$$
 for all $x \in M_1, y \in M_2$ with $f_1(x) = f_2(y)$ we have
 $(f_1)_* T_x M_1 + (f_2)_+ (T_y M_2) = T_z N$ where $z = f_1(x) = f_2(y)$.

Prove that $f_1 \pitchfork f_2$ in this sense if and only if the map

$$F = f_1 \times f_2 : M_1 \times M_2 \to N \times N$$
, $F(x, y) := (f_1(x), f_2(y))$

is transverse to the diagonal

$$\Delta := \{ (z, z) \in N \times N \mid z \in N \}.$$

So in fact transversality for maps is not more general than transversality of one map to a submanifold of the target, and all statements about the latter have reformulations for the former.

- 3. a) Prove that Brouwer's Theorem is false for the open ball.
 - b) Find a map of the solid torus in \mathbb{R}^3 to itself with no fixed points. Where does our proof of Brouwer's theorem fail in this situation?
 - c) Use Brouwer's theorem to prove the following result of Frobenius: If $A \in Mat(n, \mathbb{R})$ is a real $n \times n$ matrix with all entries nonnegative, then it must have a real eigenvalue $\lambda \geq 0$. *Hint: You can assume w.l.o.g. that* det $A \neq 0$ (why?). Under this additional assumption, can you use A to define a map $S^{n-1} \to S^{n-1}$ which preserves the intersection of S^{n-1} with the closed first quadrant?