DIFFERENTIAL TOPOLOGY

Problem Set 11

- a) Compute (e.g. inductively using the Mayer-Vietoris sequence) the de Rham cohomology of the complement of k points in ℝⁿ for any k ≥ 1.
 - **b)** A closed oriented surface Σ_g of genus g can be obtained from S^2 by removing 2g disks and gluing the resulting boundary circles to each other in pairs. Alternatively, one can also just remove the centers of the disks and glue cylinders $[-1, 1] \times S^1$ to a pair of the resulting annuli (disk \ center point). Can you use this to compute the de Rham cohomology of Σ_g ?
- **2.** a) Compute the de Rham cohomology groups of $X := \mathbb{R}^3 \setminus A$, where A is the union of two coordinate lines.
 - b) Compute the de Rham cohomology groups of $Y := \mathbb{R}^4 \setminus B$, where B is the union of two coordinate planes intersecting transversely, i.e. only in $\{0\}$.
 - c) Are X and Y homotopy equivalent?
- **3.** Prove that every simply connected manifold M satisfies $H^1(M) \cong 0$.
- 4. Use Poincaré duality in the noncompact case to compute $H^p_c(\mathbb{R}^n \setminus \{0\})$ for all $p \ge 0$, and find explicit differential forms whose cohomology classes make up a basis for $H^*_c(\mathbb{R}^n \setminus \{0\})$. Hint: If you find the second part hard, consider at least the special case n = 2.
- 5. a) Prove the 5-Lemma stated in the lecture: If the commuting diagram

has exact rows and f_A , f_B , f_D and f_E are isomorphisms, then f_C is also an isomorphism.

b) Can you weaken the assumptions and still obtain the same conclusion?