Universität Hamburg Janko Latschev

DIFFERENTIAL TOPOLOGY

Problem Set 10

1. A diffeomorphism $f: U \to V$ of open subsets $U, V \subseteq \mathbb{R}^n$ gives rise to a diffeomorphism

$$\Phi: T^*V \to T^*U, \quad \Phi(x,\alpha) = (f^{-1}(x), f^*\alpha).$$

Suppose (x_1, \ldots, x_n) are coordinates on \mathbb{R}^n and (y_1, \ldots, y_n) are dual coordinates on the fibers of $T^*\mathbb{R}^n$, i.e. those obtained from writing a linear form in the basis dx_1, \ldots, dx_n .

a) Prove that the form $\alpha \in \Omega^1(T^*\mathbb{R}^n)$, given as

$$\alpha := \sum_{i=1}^{n} y_i dx_i,\tag{1}$$

has the property that

$$\Phi^*(\alpha|_{T^*U}) = \alpha|_{T^*V}.$$

- b) Deduce that on the cotangent bundle of any smooth manifold M there exists a canonically defined 1-form $\alpha \in \Omega^1(T^*M)$, which in every local coordinate chart takes the form (1).
- c) Prove that the form $\omega := d\alpha$ has the property that $\omega \wedge \cdots \wedge \omega$ (dim *M* factors) is a volume form on T^*M .
- 2. The aim of this exercise is to prove that integration provides an isomorphism from the topdimensional de Rham cohomology group $H^n_{dR}(M)$ of a closed, connected and oriented *n*dimensional manifold to \mathbb{R} .
 - **a)** Prove by induction on *n* that if $f : \mathbb{R}^n \to \mathbb{R}$ is a function with compact support and $\int_{\mathbb{R}^n} f(x) dx_1 \dots dx_n = 0$, then there exist functions $u_i : \mathbb{R}^n \to \mathbb{R}, i \in \{1, \dots, n\}$ with compact support such that $f = \sum_i \frac{\partial u_i}{\partial x_i}$.

Hint: The case n = 1 is an easy consequence of the fundamental theorem of calculus. For the induction step consider the auxiliary function

$$g(x_2,\ldots,x_n) := \int_{\mathbb{R}} f(x_1,x_2,\ldots,x_n) \, dx_1,$$

and observe that by Fubini's theorem one can apply the induction hypothesis to obtain $u_2 \ldots, u_n$. To get the remaining function u_1 , adjust

$$w_1(x_1,...,x_n) := \int_{-\infty}^{x_1} f(t,x_2,...,x_n) dt$$

by subtracting a suitably cut off version of g.

b) Deduce from this that every compactly supported form $\omega \in \Omega^n(\mathbb{R}^n)$ with vanishing integral is the differential of a compactly supported form $\eta \in \Omega^{n-1}(\mathbb{R}^n)$.

Winter 2017/18

Bitte wenden!

- c) Now prove that for a manifold M satisfying the above assumptions, there are finitely many open sets U_0, U_1, \ldots, U_r diffeomorphic to balls and covering M and diffeomorphisms $\varphi_i : M \to M$ isotopic to the identity with $\varphi_i(U_0) = U_i$.
- **d)** Prove that for any closed form $\alpha \in \Omega^n(M)$ with compact support in some U_i , $\varphi_i^* \alpha$ and α are cohomologous. Hint: Consider an isotopy $\Phi_t : M \to M$, $t \in [0,1]$ with $\Phi_0 = id_M$ and $\Phi_1 = \varphi_i$. Now argue that for $t, t' \in [0,1]$ sufficiently close, $\Phi_t^* \alpha$ and $\Phi_{t'}^* \alpha$ will both have support in $\Phi_t^{-1}(U_i)$ and have the same integral, and so by part **b**) they must be cohomologous. Finish with a standard open-and-closed argument.
- e) Now complete the proof of the original claim by using a partition of unity subordinate to the cover $\{U_i\}_{i=0,...,r}$ of M from part c) to break up a given form $\omega \in \Omega^n(M)$ whose integral over M vanishes into components ω_i with support in U_i and applying the result of part b) to the form

$$\tilde{\omega} = \sum_{i=0}^{n} \varphi_i^* \omega_i$$

with support in U_0 , which by part d) is cohomologous to ω .

3. Let M and N be two closed oriented manifolds of dimension n. By the previous exercise, $H^n_{dR}(M) \cong \mathbb{R} \cong H^n_{dR}(N)$. So, given any smooth map $f: M \to N$, the induced map

$$f^*: H^n_{\mathrm{dR}}(N) \longrightarrow H^n_{\mathrm{dR}}(M)$$

can be viewed as a linear map $\mathbb{R} \to \mathbb{R}$. Such a map is necessarily multiplication by some constant $d \in \mathbb{R}$. Prove that in fact $d = \deg f$, the degree of the map f. Hint: Find an open disk $V \subset N$ consisting of regular values such that $f : f^{-1}(V) \to V$ is a covering map, and use a form with support in V to compute d.

4. Prove that there is no map of nonzero degree from S^2 to T^2 . Hint: One strategy uses the multiplication on de Rham cohomology induced from the wedge product.