Symplectic Homology

Problem Set 4

- 1. Express the conditions for a compatible almost complex structure on the symplectization of a contact manifold (V, α) to be convex in the coordinates where the symplectization is given by $(\mathbb{R} \times V, d(e^s \alpha))!$
- **2.** We view \mathbb{C} as the completion of the ball $\overline{B(0,1)}$, viewed as a Liouville domain with Liouville form $\lambda = \frac{1}{2}(x \, dy y \, dx)$, and consider the family of Hamiltonians $H_b: \mathbb{C} \to \mathbb{C}$ given as

$$H_b(z) = b|z|^2 - b.$$

- a) Prove that these Hamiltonians are linear with slope *b* according to our definitions (this involves writing out the explicit parametrization of the cylindrical end)!
- b) What conditions do we have to impose on b in order for H_b to have only nondegenerate 1-periodic orbits? How many 1-periodic orbits are there for such an admissible $b \in (0, \infty)$?
- c) Compute $HF_*(H_b, J_0)$ for such Hamiltonians (where J_0 is the standard almost complex structure, i.e. multiplication by i)! Pay special attention to gradings!
- d) How much of this discussion generalizes to \mathbb{C}^n ?
- a) Prove that for any smooth closed manifold Q the first Chern class of its cotangent bundle (T*Q, ω_{can}) vanishes!
 Hint: Write T*Q|_Q as the complexification of a real vector bundle, and then check what the literature says about Chern classes of such bundles.
 - **b)** Prove that for any regular level set $f^{-1}(c) \subset \mathbb{C}^N$ of a holomorphic function $f : \mathbb{C}^N \to \mathbb{C}$ the first Chern class vanishes! How does this generalize to complex submanifolds of higher codimension?

4. Let (W, λ) be a Liouville domain and let $(\widehat{W}, \widehat{\lambda})$ be its completion. Suppose $H^{\pm} : \widehat{W} \to \mathbb{R}$ are linear Hamiltonians with slopes $b^{-} \geq b^{+}$ on $[r_{0}, \infty) \times (\partial W)$, where b^{\pm} are both not in the action spectrum of $\lambda|_{\partial W}$. Prove that the image of a continuation cylinder as defined in the lecture (in particular, $H_{s,t}$ has slope b(s) on $[r_{0}, \infty) \times (\partial W)$ with $b'(s) \leq 0$) cannot intersect $[r_{0}, \infty) \times (\partial W)$, by adapting the proof given in the lecture for Floer cylinders of a single linear Hamiltonian!