Symplectic Homology

Problem Set 3

In the following exercises, J_{0} denotes the standard complex structure on $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$.

1. a) Let $S:[0,1] \rightarrow \operatorname{Mat}(2 n, \mathbb{R})$ be a path of symmetric matrices, and let $R:[0,1] \rightarrow \operatorname{Mat}(2 n, \mathbb{R})$ be the solution of the initial value problem

$$
\frac{d}{d t} R(t)=J_{0} S(t) R(t), \quad R(0)=\mathrm{id}
$$

Prove that R is a path of symplectic matrices.
b) Prove conversely that if $R:[0,1] \rightarrow S p(2 n)$ is a continuously differentiable path, then the path $S:[0,1] \rightarrow \operatorname{Mat}(2 n, \mathbb{R})$ defined as

$$
S(t)=-J_{0} R^{\prime}(t) R(t)^{-1}
$$

consists of symmetric matrices.
c) Compute the path $A_{k}(t)=e^{J_{0} S_{k} t}$ for each of the following matrices

$$
S_{1}=\left(\begin{array}{cc}
\pi & 0 \\
0 & \pi
\end{array}\right), \quad S_{2}=\left(\begin{array}{cc}
-\pi & 0 \\
0 & \pi
\end{array}\right), \quad S_{3}=\left(\begin{array}{cc}
-\pi & 0 \\
0 & -\pi
\end{array}\right)
$$

and compute the Conley-Zehnder indices of these paths.
2. Prove the following properties of the Conley-Zehnder index that were claimed in the lecture:
a) If A and B are homotopic through paths in $S P(2 n)$, then $\mu_{C Z}(A)=\mu_{C Z}(B)$.
b) If $A \in S P(2 n)$ and $\Phi:[0,1] \rightarrow S p(2 n)$ is a loop based at id, then

$$
\mu_{C Z}(\Phi A)=\mu_{C Z}(A)+2 \mu(\Phi),
$$

where $\mu(\Phi)$ is the usual Maslov index of that loop.
c) If $S \in \operatorname{Mat}(2 n, \mathbb{R})$ is a nondegenerate symmetric matrix with $\|S\|<2 \pi$, and $A(t)=e^{J_{0} S t}$, then $\mu_{C Z}(A)=\frac{1}{2} \operatorname{sign}(S)$, where $\operatorname{sign}(S)$ is the difference between the number of positive and the number of negative eigenvalues.
d) If $A \in S P(2 n)$ and $B \in S p(2 n)$ then

$$
\mu_{C Z}\left(B A B^{-1}\right)=\mu_{C Z}(A)
$$

e) If $A \in S P(2 n)$ and for $t>0$ the matrices $A(t)$ have no eigenvalues on S^{1}, then $\mu_{C Z}(A)=0$.
f) If $A \in S P(2 n)$ then

$$
\mu_{C Z}\left(A^{-1}\right)=\mu_{C Z}\left(A^{T}\right)=-\mu_{C Z}(A) .
$$

3. Consider the paths of matrices

$$
A(t)=\left(\begin{array}{cc}
1+4 \pi^{2} t^{2} & 2 \pi t \\
2 \pi t & 1
\end{array}\right) \quad \text { and } \quad B(t)=\left(\begin{array}{cc}
1-4 \pi^{2} t^{2} & -2 \pi t \\
2 \pi t & 1
\end{array}\right)
$$

a) Prove that A and B are in $S P(2)$.
b) Compute the Conley-Zehnder indices for both paths.

