Symplectic Homology

Problem Set 1

- 1. (Transversality) Suppose M is a d-dimensional manifold without boundary.
 - a) Prove that the transverse intersection of two submanifolds is again a submanifold, whose codimension is the sum of the codimensions of the two original submanifolds.
 - **b)** Prove that if the first submanifold is oriented and the second one is cooriented (i.e. it has an oriented normal bundle), then the intersection comes with a preferred orientation.

What would be the analogue of these statements for manifolds with boundary?

- 2. (Morse homology over Z) Let a closed manifold M, a Morse function $f: M \to \mathbb{R}$ and a metric g on M be given. Then each critical point p of f has stable and unstable manifolds $W^s(p)$ and $W^u(p)$ with respect to the gradient flow of f, and we assume that (f, g) is a Morse-Smale pair. We choose orientations for the unstable manifolds $W^u(p)$, which automatically give us coorientations for the stable manifolds $W^s(p)$ (why?).
 - a) Explain how these choices, together with the standard orientation of \mathbb{R} , give rise to orientations of the moduli spaces of trajectories

$$\mathcal{L}(q,p) = (W^u(q) \cap W^s(p))/\mathbb{R}.$$

- **b)** What does this mean when $\operatorname{ind} q \operatorname{ind} p = 1$ (so that $\dim \mathcal{L}(q, p) = 0$)?
- c) Prove that the conventions can be set up so that if $\operatorname{ind} q \operatorname{ind} p = 2$ (which implies that $\mathcal{L}(q, p)$ is 1-dimensional), the boundary of $\mathcal{L}(q, p)$ equals

$$\coprod_{\operatorname{ind} p < \operatorname{ind} r < \operatorname{ind} q} \mathcal{L}(q, r) \times \mathcal{L}(r, p)$$

as oriented manifolds.

d) Conclude that the Morse complex of f can be defined over \mathbb{Z} .

3. (Perfect Morse function) Consider the function $f : \mathbb{C}P^n \to \mathbb{R}$ given in homogeneous coordinates $[z_0 : \ldots : z_n]$ on $\mathbb{C}P^n$ as

$$f([z_0:\ldots:z_n]) := \frac{1}{\|z\|^2} \sum_{k=0}^n k \cdot |z_k|^2.$$

Prove that f is a Morse function, and describe its Morse complex with respect to the standard metric on $\mathbb{C}P^n$. What happens when you restrict f to $\mathbb{R}P^n$?

- **4.** (Energy and Asymptotics) Let $f : M \to \mathbb{R}$ be a Morse function on a closed manifold M, and let g be any metric on M.
 - a) Prove that the energy

$$E(\gamma) := \int_{\mathbb{R}} |\dot{\gamma}(t)|_g^2 dt$$

is uniformly bounded for all gradient flow lines, i.e. solutions $\gamma : \mathbb{R} \to M$ of $\dot{\gamma}(t) = \operatorname{grad} f(\gamma(t))$.

b) Deduce that there are critical points $x_{\pm} \in \operatorname{Crit}(f)$ of f such that

$$\lim_{t \to \infty} \gamma(t) = x_+ \quad \text{and} \quad \lim_{t \to -\infty} \gamma(t) = x_-.$$

c) Prove that in fact there are constants $C_{\pm}, \delta_{\pm} > 0$ such that for all $t \in \mathbb{R}$ we have

$$d(x_+, \gamma(t)) \le C_+ e^{-\delta_+ t}$$
 and $d(x_-, \gamma(t)) \le C_- e^{\delta_- t}$.