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Analysis on (almost) complex manifolds

Almost complex manifolds

Suppose (M, J) is an almost complex manifold. For p € M we consider the
complexified tangent space T,M ® C, which is a complex vector space of di-
mension dim M and a real vector space of dimension 2 dim M. The real linear
map J extends to a complex linear map J on this space, and since J? = —Id
this map has eigenvalues 4-i. We denote the corresponding eigenspaces as'

Ty ={wel,M®C|Jw=iw} CT,M®C
Ton ={weT,M®C|Jw=—iw} CT,M®C

These are naturally complex subspaces of the complex vector space T, M ® C,
where the complex structure is given by multiplication by .

Fzercise 1. Prove that the map T,M — T,M ® C given by v — v — iJv is
an isomorphism of the complex vector spaces (T,M,J) = (T ,1). Similarly
v+ v +iJv is an isomorphism between the complex vector spaces (T,M, J)
and (7})717 —l) = T()’l.

We have T,M ® C = T o ® Tp,; and denote the projections by

T1,0 : TpM RC — Tl,O and To,1 : TpM RC — T()?l.

An analogous discussion applies to the complexified cotangent space T; M @ C.
We have TyM & C = Tpl’0 <> Tl?’l where

T :={peT;M&C|poJ=ip} CT,MxC
T ={peT,M®C|poJ=—ip} CT;M®C.

The corresponding projections are denoted by
™ TM@C—T)° and 7' :TXM®C— T
As above, we have isomorphisms of complex vector spaces
1,0 A (o ~ 0,1
T,° = (T, M, J)=T,".

where the composition of the isomorphisms is literally complex conjugation,
sending a given element ¢ —ipo J € )" to ¢+ igo J € o = (T, —1).

1To avoid cumbersome notation, we leave off the base point here.



Complex analysis

As this splitting of Ty M ®@C can be done at each point, we get a global splitting
of the complexified cotangent bundle as the direct sum of two subbundles

T*M ® C ~ Tl,O D TO’I.
The exterior powers of the complexified cotangent bundle split accordingly as

AT M)yoC= AT A AT

p+q=k =:AP9T*M

Complex valued differential forms of degree k are smooth sections of the bundle
A¥(T*M) @ C, so they can be split according to type as well. More precisely,
we define Q2”9(M) to be the space of smooth sections of AP¢(T*M), and obtain

oM M.C) = @ QrM).
pt+q=k
With respect to this splitting, we have projections
P QF (M, C) — QPY(M).

We would now like to understand the behavior of the exterior differential
d : QF(M,C) — QF (M, C) with respect to the above splitting. Since d is
a derivation, it is essential to understand it on functions and 1-forms. For
functions C*(M,C) = Q°(M,C) we of course have

d:Q(M,C) — QY(M,C) = QM) @ Q" (M),
and we define the maps

0:Q°%(M,C) — QY%(Mm) |
0:Q°%M,C) — Q™ (M)

Over a contractible open subset U C M we can trivialize the bundles AY0T* M
and A®'T*M, and so we can locally find n = dim¢ M sections o, ..., a, of
QYO(U). Their complex conjugates aj, . . ., @, will be sections of Q%!(U) such
that any complex valued 1-form ¢ € Q!(U, C) can be written as

¢ = kaak + de@e
k=1 /=1

with smooth complex valued functions fx : U — C and ¢, : U — C. More
generally, any form n € QP9(U) can be written as

n = Z Nk, LK N O, (1)
|K|=p,|L=q

with the obvious multiindex notation. Now

Q*(M,C) = Q> (M) @ Q"(M) @ Q%*(M),
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Complex analysis

so the exterior differential of one of the forms ay, will generally have the three
components

72%doy) € Q*O(M) ,  a'Mdoy) € QY(M) and  7%?(doy) € Q%*(M),

and similarly for their complex conjugates. Applying the derivation property
d(m Anz) = (dny) Ama+(=1)3mn, A(dny) to a general (p, ¢)-form n written as
in (1) one finds that on a general almost complex manifold (M, J) the exterior
differential d is a direct sum of maps

d:QPI(M) — Qp—l,q+2(M) @ QPatl (M) & Qp+17q(M) D Qp+2,q—1(M)7 (2)

and typically all four components can and will be nonzero.

Complex manifolds

On a complex manifold (M, J), the situation simplifies drastically. Indeed, on
a sufficiently small open subset U C M we can now find complex coordinates
2r = T+ 1y such that J becomes standard in these coordinates, meaning that

J(axk) = 8yk and J(ayk) = _am“k?
so that
drypoJ = —dy, and dy,oJ = duxy.

It follows that we can choose as our local basis of sections {ay} for Ty the
forms dzy, = dxy + idy(= dxy — idxy o J), with @y = dz = dzy — idyg. These
forms are exact, hence also closed, and so for a general (p, q)-form

n= Z Ni,rdzix N dzp,

K,L

the exterior derivative simplifies to

dn = Z(aUK,L)de NdzZp + Z(Enk,L)dzk ANdzZr .
KL

K,L
NS

J/ J/

Vv Vv
eQrtla(M) eQr.at1(M)

Since the projections 7% : Q"1 (M, C) — Q"(M) are invariantly defined,
we have proven that in contrast to general almost complex manifolds, on a
complex manifold (M, J) only two out of the possible four terms in (2) are
nontrivial, and the exterior derivative splits as

d=0+0  with
0 =m0 d : OPI(M) — QPFHI(M),
0 =P o d : QPUM) — QPITL(M).
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Complex analysis

In particular, the equation d? = 0 can be written as
0=(0+0)(0+0) =0+ (00 +090)+ 0.

Since each of the three summands on the right maps an element n € QP4(M) C
QF(M, C) into a different component of Q*2(M, C), each of them has to vanish
separately. In particular, for each fixed p > 0 we get a complex

0 — PO(M) L v () 2L e () s
Its cohomology is called Dolbeault cohomology,

 ker(0: QP(M) — QPITL(M))
im(0 : Qrat (M) — Qra(M))

HPY(M) -

Exercise 2. Prove the following assertions:

(a) The vector fields
give a global (complex) basis of sections for the bundle T} ((C") C TxC" ®
C, and the vector fields

(aﬂﬂk - Zayk)

1 .

form a global (complex) basis of sections for the bundle 7j,(C") C TRC"®

C. These vector basis are dual to the basis dz; and dz; for the bundles
TH(C™) and T%'(C"), respectively.

(b) The standard symplectic form wg, = >, dxy Adyy, is given in these complex
coordinates as

1
Wst = 5 ; de VAN dfk.

(c) Writing a smooth complex valued function f : C" — C as f = f(z,%), one
has

Of = (Ouf)dm  and  Of = (Ouf)dz.
k k

Such a function is holomorphic if and only if df = 0.



