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Analysis on (almost) complex manifolds

Almost complex manifolds

Suppose (M,J) is an almost complex manifold. For p ∈ M we consider the
complexified tangent space TpM ⊗ C, which is a complex vector space of di-
mension dimM and a real vector space of dimension 2 dimM . The real linear
map J extends to a complex linear map J on this space, and since J2 = −Id
this map has eigenvalues ±i. We denote the corresponding eigenspaces as1

T1,0 := {w ∈ TpM ⊗ C | Jw = iw} ⊂ TpM ⊗ C
T0,1 := {w ∈ TpM ⊗ C | Jw = −iw} ⊂ TpM ⊗ C

These are naturally complex subspaces of the complex vector space TpM ⊗C,
where the complex structure is given by multiplication by i.

Exercise 1. Prove that the map TpM → TpM ⊗ C given by v 7→ v − iJv is
an isomorphism of the complex vector spaces (TpM,J) ∼= (T1,0, i). Similarly
v 7→ v + iJv is an isomorphism between the complex vector spaces (TpM,J)
and (T0,1,−i) =: T0,1.

We have TpM ⊗ C ∼= T1,0 ⊕ T0,1 and denote the projections by

π1,0 : TpM ⊗ C→ T1,0 and π0,1 : TpM ⊗ C→ T0,1.

An analogous discussion applies to the complexified cotangent space T ∗pM⊗C.
We have T ∗pM ⊗ C ∼= T 1,0

p ⊕ T 0,1
p where

T 1,0
p := {φ ∈ T ∗pM ⊗ C | φ ◦ J = iφ} ⊂ T ∗pM ⊗ C
T 0,1
p := {φ ∈ T ∗pM ⊗ C | φ ◦ J = −iφ} ⊂ T ∗pM ⊗ C.

The corresponding projections are denoted by

π1,0 : T ∗pM ⊗ C→ T 1,0
p and π0,1 : T ∗pM ⊗ C→ T 0,1

p .

As above, we have isomorphisms of complex vector spaces

T 1,0
p
∼= (T ∗pM,J) ∼= T 0,1

p .

where the composition of the isomorphisms is literally complex conjugation,

sending a given element φ− iφ ◦ J ∈ T 1,0
p to φ+ iφ ◦ J ∈ T 0,1

p = (T 0,1
p ,−i).

1To avoid cumbersome notation, we leave off the base point here.



Complex analysis

As this splitting of T ∗pM⊗C can be done at each point, we get a global splitting
of the complexified cotangent bundle as the direct sum of two subbundles

T ∗M ⊗ C ∼= T 1,0 ⊕ T 0,1.

The exterior powers of the complexified cotangent bundle split accordingly as

Λk(T ∗M)⊗ C ∼=
⊕
p+q=k

ΛpT 1,0 ∧ ΛqT 0,1︸ ︷︷ ︸
=:Λp,qT ∗M

.

Complex valued differential forms of degree k are smooth sections of the bundle
Λk(T ∗M) ⊗ C, so they can be split according to type as well. More precisely,
we define Ωp,q(M) to be the space of smooth sections of Λp,q(T ∗M), and obtain

Ωk(M,C) =
⊕
p+q=k

Ωp,q(M).

With respect to this splitting, we have projections

πp,q : Ωk(M,C)→ Ωp,q(M).

We would now like to understand the behavior of the exterior differential
d : Ωk(M,C) → Ωk+1(M,C) with respect to the above splitting. Since d is
a derivation, it is essential to understand it on functions and 1-forms. For
functions C∞(M,C) = Ω0(M,C) we of course have

d : Ω0(M,C)→ Ω1(M,C) ∼= Ω1,0(M)⊕ Ω0,1(M),

and we define the maps

∂ :Ω0(M,C)→ Ω1,0(M) , ∂ := π1,0 ◦ d and

∂ :Ω0(M,C)→ Ω0,1(M) , ∂ := π0,1 ◦ d.

Over a contractible open subset U ⊂M we can trivialize the bundles Λ1,0T ∗M
and Λ0,1T ∗M , and so we can locally find n = dimCM sections α1, . . . , αn of
Ω1,0(U). Their complex conjugates α1, . . . , αn will be sections of Ω0,1(U) such
that any complex valued 1-form φ ∈ Ω1(U,C) can be written as

φ =
n∑
k=1

fkαk +
n∑
`=1

g`α`

with smooth complex valued functions fk : U → C and g` : U → C. More
generally, any form η ∈ Ωp,q(U) can be written as

η =
∑

|K|=p,|L|=q

ηK,LαK ∧ αL, (1)

with the obvious multiindex notation. Now

Ω2(M,C) ∼= Ω2,0(M)⊕ Ω1,1(M)⊕ Ω0,2(M),
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Complex analysis

so the exterior differential of one of the forms αk will generally have the three
components

π2,0(dαk) ∈ Ω2,0(M) , π1,1(dαk) ∈ Ω1,1(M) and π0,2(dαk) ∈ Ω0,2(M),

and similarly for their complex conjugates. Applying the derivation property
d(η1∧η2) = (dη1)∧η2 +(−1)deg η1η1∧(dη2) to a general (p, q)-form η written as
in (1) one finds that on a general almost complex manifold (M,J) the exterior
differential d is a direct sum of maps

d : Ωp,q(M)→ Ωp−1,q+2(M)⊕ Ωp,q+1(M)⊕ Ωp+1,q(M)⊕ Ωp+2,q−1(M), (2)

and typically all four components can and will be nonzero.

Complex manifolds

On a complex manifold (M,J), the situation simplifies drastically. Indeed, on
a sufficiently small open subset U ⊂ M we can now find complex coordinates
zk = xk+iyk such that J becomes standard in these coordinates, meaning that

J(∂xk) = ∂yk and J(∂yk) = −∂xk ,

so that

dxk ◦ J = −dyk and dyk ◦ J = dxk.

It follows that we can choose as our local basis of sections {αk} for T 1,0|U the
forms dzk = dxk + idyk(= dxk − idxk ◦ J), with αk = dzk = dxk − idyk. These
forms are exact, hence also closed, and so for a general (p, q)-form

η =
∑
K,L

ηK,LdzK ∧ dzL

the exterior derivative simplifies to

dη =
∑
K,L

(∂ηK,L)dzk ∧ dzL︸ ︷︷ ︸
∈Ωp+1,q(M)

+
∑
K,L

(∂ηk,L)dzk ∧ dzL︸ ︷︷ ︸
∈Ωp,q+1(M)

.

Since the projections πr,s : Ωk+1(M,C) → Ωr,s(M) are invariantly defined,
we have proven that in contrast to general almost complex manifolds, on a
complex manifold (M,J) only two out of the possible four terms in (2) are
nontrivial, and the exterior derivative splits as

d = ∂ + ∂ with

∂ := πp+1,q ◦ d : Ωp,q(M)→ Ωp+1,q(M),

∂ := πp,q+1 ◦ d : Ωp,q(M)→ Ωp,q+1(M).
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Complex analysis

In particular, the equation d2 = 0 can be written as

0 = (∂ + ∂)(∂ + ∂) = ∂2 + (∂∂ + ∂∂) + ∂
2
.

Since each of the three summands on the right maps an element η ∈ Ωp,q(M) ⊂
Ωk(M,C) into a different component of Ωk+2(M,C), each of them has to vanish
separately. In particular, for each fixed p ≥ 0 we get a complex

0 −→ Ωp,0(M)
∂−→ Ωp,1(M)

∂−→ Ωp,2(M)
∂−→ . . .

Its cohomology is called Dolbeault cohomology,

Hp,q(M) :=
ker(∂ : Ωp,q(M)→ Ωp,q+1(M))

im(∂ : Ωp,q−1(M)→ Ωp,q(M))
.

Exercise 2. Prove the following assertions:

(a) The vector fields

∂k :=
∂

∂zk
:=

1

2
(∂xk − i∂yk)

give a global (complex) basis of sections for the bundle T1,0(Cn) ⊂ TRCn⊗
C, and the vector fields

∂k :=
∂

∂zk
:=

1

2
(∂xk + i∂yk)

form a global (complex) basis of sections for the bundle T0,1(Cn) ⊂ TRCn⊗
C. These vector basis are dual to the basis dzk and dzk for the bundles
T 1,0(Cn) and T 0,1(Cn), respectively.

(b) The standard symplectic form ωst =
∑

k dxk∧dyk is given in these complex
coordinates as

ωst =
i

2

∑
k

dzk ∧ dzk.

(c) Writing a smooth complex valued function f : Cn → C as f = f(z, z), one
has

∂f =
∑
k

(∂kf)dzk and ∂f =
∑
k

(∂kf)dzk.

Such a function is holomorphic if and only if ∂f = 0.
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