Analysis on (almost) complex manifolds

Almost complex manifolds

Suppose (M, J) is an almost complex manifold. For $p \in M$ we consider the complexified tangent space $T_{p} M \otimes \mathbb{C}$, which is a complex vector space of dimension $\operatorname{dim} M$ and a real vector space of dimension $2 \operatorname{dim} M$. The real linear map J extends to a complex linear map J on this space, and since $J^{2}=-\mathbf{I d}$ this map has eigenvalues $\pm i$. We denote the corresponding eigenspaces as ${ }^{1}$

$$
\begin{aligned}
& T_{1,0}:=\left\{w \in T_{p} M \otimes \mathbb{C} \mid J w=i w\right\} \subset T_{p} M \otimes \mathbb{C} \\
& T_{0,1}:=\left\{w \in T_{p} M \otimes \mathbb{C} \mid J w=-i w\right\} \subset T_{p} M \otimes \mathbb{C}
\end{aligned}
$$

These are naturally complex subspaces of the complex vector space $T_{p} M \otimes \mathbb{C}$, where the complex structure is given by multiplication by i.
Exercise 1. Prove that the map $T_{p} M \rightarrow T_{p} M \otimes \mathbb{C}$ given by $v \mapsto v-i J v$ is an isomorphism of the complex vector spaces $\left(T_{p} M, J\right) \cong\left(T_{1,0}, i\right)$. Similarly $v \mapsto v+i J v$ is an isomorphism between the complex vector spaces $\left(T_{p} M, J\right)$ and $\left(T_{0,1},-i\right)=: \overline{T_{0,1}}$.
We have $T_{p} M \otimes \mathbb{C} \cong T_{1,0} \oplus T_{0,1}$ and denote the projections by

$$
\pi_{1,0}: T_{p} M \otimes \mathbb{C} \rightarrow T_{1,0} \quad \text { and } \quad \pi_{0,1}: T_{p} M \otimes \mathbb{C} \rightarrow T_{0,1}
$$

An analogous discussion applies to the complexified cotangent space $T_{p}^{*} M \otimes \mathbb{C}$. We have $T_{p}^{*} M \otimes \mathbb{C} \cong T_{p}^{1,0} \oplus T_{p}^{0,1}$ where

$$
\begin{aligned}
& T_{p}^{1,0}:=\left\{\phi \in T_{p}^{*} M \otimes \mathbb{C} \mid \phi \circ J=i \phi\right\} \subset T_{p}^{*} M \otimes \mathbb{C} \\
& T_{p}^{0,1}:=\left\{\phi \in T_{p}^{*} M \otimes \mathbb{C} \mid \phi \circ J=-i \phi\right\} \subset T_{p}^{*} M \otimes \mathbb{C} .
\end{aligned}
$$

The corresponding projections are denoted by

$$
\pi^{1,0}: T_{p}^{*} M \otimes \mathbb{C} \rightarrow T_{p}^{1,0} \quad \text { and } \quad \pi^{0,1}: T_{p}^{*} M \otimes \mathbb{C} \rightarrow T_{p}^{0,1}
$$

As above, we have isomorphisms of complex vector spaces

$$
T_{p}^{1,0} \cong\left(T_{p}^{*} M, J\right) \cong \overline{T_{p}^{0,1}}
$$

where the composition of the isomorphisms is literally complex conjugation, sending a given element $\phi-i \phi \circ J \in T_{p}^{1,0}$ to $\phi+i \phi \circ J \in \overline{T_{p}^{0,1}}=\left(T_{p}^{0,1},-i\right)$.

[^0]
Complex analysis

As this splitting of $T_{p}^{*} M \otimes \mathbb{C}$ can be done at each point, we get a global splitting of the complexified cotangent bundle as the direct sum of two subbundles

$$
T^{*} M \otimes \mathbb{C} \cong T^{1,0} \oplus T^{0,1}
$$

The exterior powers of the complexified cotangent bundle split accordingly as

$$
\Lambda^{k}\left(T^{*} M\right) \otimes \mathbb{C} \cong \bigoplus_{p+q=k} \underbrace{\Lambda^{p} T^{1,0} \wedge \Lambda^{q} T^{0,1}}_{=: \Lambda^{p, q} T^{*} M} .
$$

Complex valued differential forms of degree k are smooth sections of the bundle $\Lambda^{k}\left(T^{*} M\right) \otimes \mathbb{C}$, so they can be split according to type as well. More precisely, we define $\Omega^{p, q}(M)$ to be the space of smooth sections of $\Lambda^{p, q}\left(T^{*} M\right)$, and obtain

$$
\Omega^{k}(M, \mathbb{C})=\bigoplus_{p+q=k} \Omega^{p, q}(M) .
$$

With respect to this splitting, we have projections

$$
\pi^{p, q}: \Omega^{k}(M, \mathbb{C}) \rightarrow \Omega^{p, q}(M)
$$

We would now like to understand the behavior of the exterior differential $d: \Omega^{k}(M, \mathbb{C}) \rightarrow \Omega^{k+1}(M, \mathbb{C})$ with respect to the above splitting. Since d is a derivation, it is essential to understand it on functions and 1 -forms. For functions $C^{\infty}(M, \mathbb{C})=\Omega^{0}(M, \mathbb{C})$ we of course have

$$
d: \Omega^{0}(M, \mathbb{C}) \rightarrow \Omega^{1}(M, \mathbb{C}) \cong \Omega^{1,0}(M) \oplus \Omega^{0,1}(M)
$$

and we define the maps

$$
\begin{array}{llll}
\partial: \Omega^{0}(M, \mathbb{C}) \rightarrow \Omega^{1,0}(M) & , & \partial:=\pi^{1,0} \circ d & \text { and } \\
\bar{\partial}: \Omega^{0}(M, \mathbb{C}) \rightarrow \Omega^{0,1}(M) & , & \bar{\partial}:=\pi^{0,1} \circ d . &
\end{array}
$$

Over a contractible open subset $U \subset M$ we can trivialize the bundles $\Lambda^{1,0} T^{*} M$ and $\Lambda^{0,1} T^{*} M$, and so we can locally find $n=\operatorname{dim}_{\mathbb{C}} M$ sections $\alpha_{1}, \ldots, \alpha_{n}$ of $\Omega^{1,0}(U)$. Their complex conjugates $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}$ will be sections of $\Omega^{0,1}(U)$ such that any complex valued 1 -form $\phi \in \Omega^{1}(U, \mathbb{C})$ can be written as

$$
\phi=\sum_{k=1}^{n} f_{k} \alpha_{k}+\sum_{\ell=1}^{n} g_{\ell} \bar{\alpha}_{\ell}
$$

with smooth complex valued functions $f_{k}: U \rightarrow \mathbb{C}$ and $g_{\ell}: U \rightarrow \mathbb{C}$. More generally, any form $\eta \in \Omega^{p, q}(U)$ can be written as

$$
\begin{equation*}
\eta=\sum_{|K|=p,|L|=q} \eta_{K, L} \alpha_{K} \wedge \bar{\alpha}_{L}, \tag{1}
\end{equation*}
$$

with the obvious multiindex notation. Now

$$
\Omega^{2}(M, \mathbb{C}) \cong \Omega^{2,0}(M) \oplus \Omega^{1,1}(M) \oplus \Omega^{0,2}(M)
$$

Complex analysis

so the exterior differential of one of the forms α_{k} will generally have the three components

$$
\pi^{2,0}\left(d \alpha_{k}\right) \in \Omega^{2,0}(M) \quad, \quad \pi^{1,1}\left(d \alpha_{k}\right) \in \Omega^{1,1}(M) \quad \text { and } \quad \pi^{0,2}\left(d \alpha_{k}\right) \in \Omega^{0,2}(M)
$$

and similarly for their complex conjugates. Applying the derivation property $d\left(\eta_{1} \wedge \eta_{2}\right)=\left(d \eta_{1}\right) \wedge \eta_{2}+(-1)^{\operatorname{deg} \eta_{1}} \eta_{1} \wedge\left(d \eta_{2}\right)$ to a general (p, q)-form η written as in (1) one finds that on a general almost complex manifold (M, J) the exterior differential d is a direct sum of maps

$$
\begin{equation*}
d: \Omega^{p, q}(M) \rightarrow \Omega^{p-1, q+2}(M) \oplus \Omega^{p, q+1}(M) \oplus \Omega^{p+1, q}(M) \oplus \Omega^{p+2, q-1}(M) \tag{2}
\end{equation*}
$$

and typically all four components can and will be nonzero.

Complex manifolds

On a complex manifold (M, J), the situation simplifies drastically. Indeed, on a sufficiently small open subset $U \subset M$ we can now find complex coordinates $z_{k}=x_{k}+i y_{k}$ such that J becomes standard in these coordinates, meaning that

$$
J\left(\partial_{x_{k}}\right)=\partial_{y_{k}} \quad \text { and } \quad J\left(\partial_{y_{k}}\right)=-\partial_{x_{k}},
$$

so that

$$
d x_{k} \circ J=-d y_{k} \quad \text { and } \quad d y_{k} \circ J=d x_{k} .
$$

It follows that we can choose as our local basis of sections $\left\{\alpha_{k}\right\}$ for $\left.T^{1,0}\right|_{U}$ the forms $d z_{k}=d x_{k}+i d y_{k}\left(=d x_{k}-i d x_{k} \circ J\right)$, with $\bar{\alpha}_{k}=d \bar{z}_{k}=d x_{k}-i d y_{k}$. These forms are exact, hence also closed, and so for a general (p, q)-form

$$
\eta=\sum_{K, L} \eta_{K, L} d z_{K} \wedge d \bar{z}_{L}
$$

the exterior derivative simplifies to

$$
d \eta=\underbrace{\sum_{K, L}\left(\partial \eta_{K, L}\right) d z_{k} \wedge d \bar{z}_{L}}_{\in \Omega^{p+1, q}(M)}+\underbrace{\sum_{K, L}\left(\bar{\partial} \eta_{k, L}\right) d z_{k} \wedge d \bar{z}_{L}}_{\in \Omega^{p, q+1}(M)}
$$

Since the projections $\pi^{r, s}: \Omega^{k+1}(M, \mathbb{C}) \rightarrow \Omega^{r, s}(M)$ are invariantly defined, we have proven that in contrast to general almost complex manifolds, on a complex manifold (M, J) only two out of the possible four terms in (2) are nontrivial, and the exterior derivative splits as

$$
\begin{aligned}
& d=\partial+\bar{\partial} \quad \text { with } \\
& \partial:=\pi^{p+1, q} \circ d: \Omega^{p, q}(M) \rightarrow \Omega^{p+1, q}(M), \\
& \bar{\partial}:=\pi^{p, q+1} \circ d: \Omega^{p, q}(M) \rightarrow \Omega^{p, q+1}(M) .
\end{aligned}
$$

In particular, the equation $d^{2}=0$ can be written as

$$
0=(\partial+\bar{\partial})(\partial+\bar{\partial})=\partial^{2}+(\partial \bar{\partial}+\bar{\partial} \partial)+\bar{\partial}^{2}
$$

Since each of the three summands on the right maps an element $\eta \in \Omega^{p, q}(M) \subset$ $\Omega^{k}(M, \mathbb{C})$ into a different component of $\Omega^{k+2}(M, \mathbb{C})$, each of them has to vanish separately. In particular, for each fixed $p \geq 0$ we get a complex

$$
0 \longrightarrow \Omega^{p, 0}(M) \xrightarrow{\bar{\partial}} \Omega^{p, 1}(M) \xrightarrow{\bar{\partial}} \Omega^{p, 2}(M) \xrightarrow{\bar{\partial}} \ldots
$$

Its cohomology is called Dolbeault cohomology,

$$
H^{p, q}(M):=\frac{\operatorname{ker}\left(\bar{\partial}: \Omega^{p, q}(M) \rightarrow \Omega^{p, q+1}(M)\right)}{\operatorname{im}\left(\bar{\partial}: \Omega^{p, q-1}(M) \rightarrow \Omega^{p, q}(M)\right)}
$$

Exercise 2. Prove the following assertions:
(a) The vector fields

$$
\partial_{k}:=\frac{\partial}{\partial z_{k}}:=\frac{1}{2}\left(\partial_{x_{k}}-i \partial_{y_{k}}\right)
$$

give a global (complex) basis of sections for the bundle $T_{1,0}\left(\mathbb{C}^{n}\right) \subset T_{\mathbb{R}} \mathbb{C}^{n} \otimes$ \mathbb{C}, and the vector fields

$$
\bar{\partial}_{k}:=\frac{\partial}{\partial \bar{z}_{k}}:=\frac{1}{2}\left(\partial_{x_{k}}+i \partial_{y_{k}}\right)
$$

form a global (complex) basis of sections for the bundle $T_{0,1}\left(\mathbb{C}^{n}\right) \subset T_{\mathbb{R}} \mathbb{C}^{n} \otimes$ \mathbb{C}. These vector basis are dual to the basis $d z_{k}$ and $d \bar{z}_{k}$ for the bundles $T^{1,0}\left(\mathbb{C}^{n}\right)$ and $T^{0,1}\left(\mathbb{C}^{n}\right)$, respectively.
(b) The standard symplectic form $\omega_{\text {st }}=\sum_{k} d x_{k} \wedge d y_{k}$ is given in these complex coordinates as

$$
\omega_{\mathrm{st}}=\frac{i}{2} \sum_{k} d z_{k} \wedge d \bar{z}_{k}
$$

(c) Writing a smooth complex valued function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ as $f=f(z, \bar{z})$, one has

$$
\partial f=\sum_{k}\left(\partial_{k} f\right) d z_{k} \quad \text { and } \quad \bar{\partial} f=\sum_{k}\left(\bar{\partial}_{k} f\right) d \bar{z}_{k}
$$

Such a function is holomorphic if and only if $\bar{\partial} f=0$.

[^0]: ${ }^{1}$ To avoid cumbersome notation, we leave off the base point here.

