Symplectic Geometry

Problem Set 8

1. For a function $a: \mathbb{R}^{4} \rightarrow \mathbb{R}$, we consider the almost complex structure J_{a} on the manifold $M=\mathbb{R}^{4}$ which in the global coordinates $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ has the form

$$
J_{a}(p)=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
a(p) & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & -a(p) & 0
\end{array}\right) \text {, i.e. } J_{a}\left(\frac{\partial}{\partial x_{1}}\right)=a(p) \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial y_{1}} \quad \text { etc. }
$$

a) Prove that if $|a(p)| \leq 1$ for all $p \in \mathbb{R}^{4}$, then J_{a} is tamed by the standard symplectic form $\omega_{\text {st }}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$!
Hint: Recall that the taming condition means that $\omega(v, J v)>0$ for all nonzero v, but ω need not be J-invariant, so that the bilinear form $\omega(., J$. need not be symmetric.
b) Under which conditions on the function a is the almost complex structure J_{a} on \mathbb{R}^{4} integrable?
Hint: Argue that in order to determine $N_{J_{a}}$ on any two vectors $v, w \in T_{p} \mathbb{R}^{4}$, it suffices to know $N_{J_{a}}\left(\frac{\partial}{\partial x_{1}}(p), \frac{\partial}{\partial x_{2}}(p)\right)$, and then compute this.
2. Consider an almost complex structure J on an open set $U \subset \mathbb{R}^{2 n}$. Prove:
a) If $f: U \rightarrow \mathbb{C}$ is J-holomorphic, meaning that $d f \circ J=i \circ d f$, then at each point $p \in U$ the rank of the differential $d f_{p}$ is either 0 or 2 .
b) The inverse image of a regular value $z \in \mathbb{C}$ is a J-complex submanifold (of codimension 2), i.e. its tangent bundle is invariant under J.
c) The image of the Nijenhuis tensor N_{J} is contained in ker $d f$.
d) Consider the case $n=2$, i.e. a subset $U \subset \mathbb{R}^{4}$ and find an almost complex structure on a suitable U for which there do not exists nonconstant J holomorphic functions $f: U \rightarrow \mathbb{C}$.
3. Consider a Kähler manifold (M, ω, J) and suppose that $\varphi: M \rightarrow M$ is an isometric involution ($\varphi^{2}=\mathrm{id}$) of the corresponding Kähler metric $g_{J}=\omega(., J$. which is antiholomorphic, i.e. such that $\varphi_{*} \circ J=-J \circ \varphi_{*}$.
a) Prove that φ is antisymplectic, i.e. $\varphi^{*} \omega=-\omega$.
b) Prove that the fixed point set of φ is a totally geodesic submanifold for the metric g_{J}.
c) Prove that the fixed point set is a Lagrangian submanifold of (M, ω).
d) What is the fixed point set of $\varphi: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}$, given in homogeneous coordinates as complex conjugation

$$
\varphi\left(\left[z_{0}: \ldots: z_{n}\right]\right)=\left[\bar{z}_{0}: \ldots: \bar{z}_{n}\right] ?
$$

Remark: Note that if $X \subset \mathbb{C} P^{n}$ is a smooth complex submanifold given as the zero set of finitely many homogeneous polynomials with real coefficients, then φ also induces an antiholomorphic and antisymplectic involution on X. This gives many interesting examples.

