Symplectic Geometry

Problem Set 7

1. Let $V=V\left(a_{1}, \ldots, a_{n}\right) \subset \mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ be the boundary of the ellipsoid

$$
E\left(a_{1}, \ldots, a_{n}\right):=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \left\lvert\, \frac{\left|z_{1}\right|^{2}}{a_{1}}+\cdots+\frac{\left|z_{n}\right|^{2}}{a_{n}} \leq 1\right.\right\}
$$

where $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ are real parameters.
a) Show that the restriction of $\lambda_{0}:=\frac{1}{2} \sum_{j}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$ to V is a contact form, and compute its Reeb vector field.
b) Assuming that the a_{j} are rationally independent, i.e. that all the quotients $\frac{a_{j}}{a_{k}}$ for $j \neq k$ are irrational, find all the closed Reeb orbits.
c) Compute the volume of $E\left(a_{1}, \ldots, a_{n}\right)$ with respect to the standard volume form $\frac{1}{n!} \omega_{\text {st }}=d x_{1} \wedge d y_{1} \wedge \ldots d x_{n} \wedge d y_{n}$.
d) Prove that for $\left(a_{1}, a_{2}\right) \neq(1,1)$ the ellipsoid $E\left(a_{1}, a_{2}\right)$ cannot be symplectomorphic to the closed ball $\overline{B^{4}}=E(1,1) \subset\left(\mathbb{R}^{4}, \omega_{\mathrm{st}}\right)$.
Hint: Consider the three cases $a_{1}=a_{2}, \frac{a_{1}}{a_{2}} \in \mathbb{Q} \backslash\{1\}$ and $\frac{a_{1}}{a_{2}} \in \mathbb{R} \backslash \mathbb{Q}$ separately.
2. Let W be a manifold and let ξ be a coorientable contact structure on W, i.e. one which admits global contact forms. Prove that a contact vector field Y on W will be the Reeb vector field for some contact form λ defining ξ if and only if Y is everywhere transverse to ξ.
3. (Legendrian knots) Prove that every smooth curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}, \gamma(t)=$ $(x(t), y(t))$ admits a unique lift $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}^{3}$ which starts at $\tilde{\gamma}(0)=(x(0), y(0), 0)$ and is tangent to the standard contact structure $\xi=\operatorname{ker}(d z-y d x)$. Which closed curves in the plane lift to a closed curve? Compute the lift of $\gamma(t)=$ $(\sin 2 \pi t, \sin 4 \pi t)$ explicitly and sketch its image in \mathbb{R}^{3}.

