Universität Hamburg Janko Latschev Fabian Kirchner

Symplectic Geometry

Problem Set 6

- 1. We consider the two Lagrangian submanifolds of $(\mathbb{R}^{2n}, \omega_{st})$ that were discussed in the lecture.
 - a) Given $n \ge 1$ and any fixed $0 < \epsilon < 1$, consider the image Q_1 of the Lagrangian embedding

$$\varphi: S^{n-1} \times S^1 \to \mathbb{C}^n \cong \mathbb{R}^{2n}$$
$$(\xi, \lambda) \mapsto (1 + \epsilon \lambda) \cdot \xi$$

and compute the Maslov index of the loop $\gamma_0 : \mathbb{R}/\mathbb{Z} \to Q_1$, given by $\gamma_0(t) = \varphi_0(e^{2\pi i t}, (1, 0, \dots, 0)).$

b) For $n \ge 2$, consider the image Q_2 of the Lagrangian immersion

$$\varphi_1: S^{n-1} \times S^1 \to \mathbb{C}^n \cong \mathbb{R}^{2r}$$
$$(\xi, \lambda) \mapsto \lambda \cdot \xi,$$

and compute the Maslov index of the loop $\gamma_1 : \mathbb{R}/\mathbb{Z} \to Q_2$, given by $\gamma_1(t) = \varphi_1(e^{i\pi t}, (\cos(\pi t), \sin(\pi t), 0, \dots, 0)).$

- 2. Let (M^{2n}, ω) be symplectic and let $H : M \to \mathbb{R}$ be a function. Suppose $W := H^{-1}(0) \subset M$ is a smooth **closed** oriented hypersurface of contact type, i.e. there is a vector field Y defined near W and transverse to W such that $L_Y \omega = \omega$. As we have seen in class, this means that $\alpha := (\iota(Y)\omega)|_W$ is a contact form on W.
 - a) Assuming n > 1, prove that there is no closed 1-form β on W such that $\beta(X_H) > 0$ at all points of W. Hint: You may want to use Stokes' Theorem.
 - b) Use this to prove that, if n > 1, any other vector field Z also transverse to W and satisfying $L_Z \omega = \omega$ defines the same normal orientation of W as Y.
 - c) What happens for n = 1?

- **3.** Consider the following three contact forms on \mathbb{R}^3 :
 - $\lambda_1 = dz ydx$, where (x, y, z) are cartesian coordinates,
 - $\lambda_2 = dz + xdy$, where (x, y, z) are cartesian coordinates,
 - $\lambda_3 = dz + r^2 d\varphi$, where (r, φ) are polar coordinates in \mathbb{R}^2 , and z is the third coordinate.
 - a) Picture these contact structures and their Reeb vector fields (these will be defined on Tuesday).
 - **b)** Prove that $(\mathbb{R}^3, \text{Ker } \lambda_i)$ are pairwise contactomorphic, i.e. there are diffeomorphisms $\Phi_{ij} : \mathbb{R}^3 \to \mathbb{R}^3$ and functions $\rho_{ij} : \mathbb{R}^3 \to \mathbb{R}$ such that $\Phi_{ij}^*(\lambda_i) = \rho_{ij}\lambda_j$.
 - c) Prove that for any $i \in \{1, 2, 3\}$ there is a contactomorphism of $(\mathbb{R}^3, \text{Ker } \lambda_i)$ with a bounded subset $B \subset (\mathbb{R}^3, \text{Ker } \lambda_i)$.