Symplectic Geometry

Problem Set 6

1. We consider the two Lagrangian submanifolds of $\left(\mathbb{R}^{2 n}, \omega_{\mathrm{st}}\right)$ that were discussed in the lecture.
a) Given $n \geq 1$ and any fixed $0<\epsilon<1$, consider the image Q_{1} of the Lagrangian embedding

$$
\begin{aligned}
\varphi: S^{n-1} \times S^{1} & \rightarrow \mathbb{C}^{n} \cong \mathbb{R}^{2 n} \\
(\xi, \lambda) & \mapsto(1+\epsilon \lambda) \cdot \xi
\end{aligned}
$$

and compute the Maslov index of the loop $\gamma_{0}: \mathbb{R} / \mathbb{Z} \rightarrow Q_{1}$, given by $\gamma_{0}(t)=$ $\varphi_{0}\left(e^{2 \pi i t},(1,0, \ldots, 0)\right)$.
b) For $n \geq 2$, consider the image Q_{2} of the Lagrangian immersion

$$
\begin{aligned}
\varphi_{1}: S^{n-1} \times S^{1} & \rightarrow \mathbb{C}^{n} \cong \mathbb{R}^{2 n} \\
(\xi, \lambda) & \mapsto \lambda \cdot \xi,
\end{aligned}
$$

and compute the Maslov index of the loop $\gamma_{1}: \mathbb{R} / \mathbb{Z} \rightarrow Q_{2}$, given by $\gamma_{1}(t)=$ $\varphi_{1}\left(e^{i \pi t},(\cos (\pi t), \sin (\pi t), 0, \ldots, 0)\right)$.
2. Let $\left(M^{2 n}, \omega\right)$ be symplectic and let $H: M \rightarrow \mathbb{R}$ be a function. Suppose $W:=$ $H^{-1}(0) \subset M$ is a smooth closed oriented hypersurface of contact type, i.e. there is a vector field Y defined near W and transverse to W such that $L_{Y} \omega=\omega$. As we have seen in class, this means that $\alpha:=\left.(\iota(Y) \omega)\right|_{W}$ is a contact form on W.
a) Assuming $n>1$, prove that there is no closed 1-form β on W such that $\beta\left(X_{H}\right)>0$ at all points of W. Hint: You may want to use Stokes' Theorem.
b) Use this to prove that, if $n>1$, any other vector field Z also transverse to W and satisfying $L_{Z} \omega=\omega$ defines the same normal orientation of W as Y.
c) What happens for $n=1$?
3. Consider the following three contact forms on \mathbb{R}^{3} :

- $\lambda_{1}=d z-y d x$, where (x, y, z) are cartesian coordinates,
- $\lambda_{2}=d z+x d y$, where (x, y, z) are cartesian coordinates,
- $\lambda_{3}=d z+r^{2} d \varphi$, where (r, φ) are polar coordinates in \mathbb{R}^{2}, and z is the third coordinate.
a) Picture these contact structures and their Reeb vector fields (these will be defined on Tuesday).
b) Prove that $\left(\mathbb{R}^{3}, \operatorname{Ker} \lambda_{i}\right)$ are pairwise contactomorphic, i.e. there are diffeomorphisms $\Phi_{i j}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and functions $\rho_{i j}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\Phi_{i j}^{*}\left(\lambda_{i}\right)=\rho_{i j} \lambda_{j}$.
c) Prove that for any $i \in\{1,2,3\}$ there is a contactomorphism of $\left(\mathbb{R}^{3}, \operatorname{Ker} \lambda_{i}\right)$ with a bounded subset $B \subset\left(\mathbb{R}^{3}, \operatorname{Ker} \lambda_{i}\right)$.

