Symplectic Geometry

Problem Set 3

1. Let $\Psi: \mathbb{R} / \mathbb{Z} \rightarrow S p(2 n, \mathbb{R})$ be a loop of symplectic linear maps. Let $\Gamma_{\Psi}: \mathbb{R} / \mathbb{Z} \rightarrow$ $\mathcal{L}(2 n)$ be the loop of Lagrangian subspaces in $\left(\mathbb{R}^{2 n} \oplus \mathbb{R}^{2 n},\left(-\omega_{\text {st }}\right) \oplus \omega_{\text {st }}\right)$ given by

$$
\Gamma_{\Psi}(t)=\left\{(v, \Psi(t) v) \mid v \in \mathbb{R}^{2 n}\right\} .
$$

a) Prove that $\Gamma_{\Psi}(t)$ is indeed a Lagrangian subspace for all t !
b) Prove that the Maslov indices of these two loops are related by

$$
\mu\left(\Gamma_{\Psi}\right)=2 \mu(\Psi) .
$$

2. A diffeomorphism $\varphi: Q \rightarrow Q^{\prime}$ between manifolds lifts to a diffeomorphism $\Phi: T^{*} Q \rightarrow T^{*} Q^{\prime}$ given by the formula

$$
\Phi(x, \alpha):=\left(\varphi(x),\left(d \varphi(x)^{-1}\right)^{*}(\alpha)\right)
$$

a) Prove that $\Phi^{*}\left(\lambda_{\text {can }}\right)=\lambda_{\text {can }}$, and so Φ is a symplectomorphism from $T^{*} Q$ to $T^{*} Q^{\prime}$!
b) Let $Y: Q \rightarrow T Q$ be a complete vector field, and denote by ψ_{t} its flow. Let $X: T^{*} Q \rightarrow T\left(T^{*} Q\right)$ be the vector field generating the corresponding flow Ψ_{t} on $T^{*} Q$. Prove that X is the Hamiltonian vector field associated to the function $H: T^{*} Q \rightarrow \mathbb{R}$ defined as

$$
H(x, \alpha):=\alpha(Y(x))
$$

3. Show that if $\gamma: M \rightarrow M$ is any symplectomorphism of (M, ω) and $H: M \rightarrow \mathbb{R}$ is smooth, then the Hamiltonian vector fields of the functions H and $H \circ \gamma^{-1}$ are related by

$$
X_{H \circ \gamma^{-1}}(\gamma(x))=\gamma_{*}\left(X_{H}(x)\right)
$$

where $\gamma_{*}: T M \rightarrow T M$ is the differential of γ.
4. Consider a Hamiltonian function $H: B^{2}(0,1) \rightarrow \mathbb{R}$ of the form $H=y \cdot \rho(r)$, where $\rho: B^{2}(0,1) \rightarrow[0,1]$ is a nonincreasing smooth function of the radius $r=\sqrt{x^{2}+y^{2}}$ which equals 1 for $0 \leq r \leq \frac{1}{2}$ and equals 0 for $\frac{3}{4} \leq r \leq 1$. Describe the image of the ball $B^{2}\left(0, \frac{1}{100}\right)$ under the time- t-map φ_{t} of the Hamiltonian flow of H for $t=10, t=10^{2}$ and $t=10^{5}$ qualitatively!

