Winter 2014/15

Symplectic Geometry

Problem Set 11

- 1. In the lecture I mentioned that the Brouwer Fixpoint Theorem fails in infinite dimensions. Give an explicit counterexample in the Hilbert space $\ell^2(\mathbb{R})$ of real sequences $(x_n)_{n\geq 1}$ with $\sum_n x_n^2 < \infty$, i.e. find a continuous map of the closed unit ball of this space into itself without a fixpoint.
- **2.** (*Packing balls*) Denote by $B^{2n}(a) \subset (\mathbb{R}^{2n}, \omega_{st})$ the ball of Gromov width a.
 - a) Compute the volume of $B^{2n}(a)$ in terms of a and n (the answer is a very simple formula)!
 - **b)** Argue that given any $\epsilon \in \mathbb{R}$ with $0 < \epsilon < a$ there is a symplectic (i.e. area preserving) embedding $\sigma : B^2(a \epsilon) \to (0, a) \times (0, 1)$ such that for all $\alpha \in (0, a \epsilon]$ one has $\sigma(B^2(\alpha)) \subset (0, \alpha + \epsilon) \times (0, 1)$. Remark: A complete proof of this fact is somewhat delicate to write down. Try to describe an idea for constructing this embedding and give as much detail as possible!
 - c) Prove that under the map $\rho := \sigma \times \sigma : B^2(a-\epsilon) \times B^2(a-\epsilon) \to \mathbb{R}^4$ the image of the ball $B^4(a-2\epsilon) \subset B^2(a-\epsilon) \times B^2(a-\epsilon)$ is contained in

$$\Delta(a) \times \Box(1) \subset \mathbb{R}^4,$$

where

$$\Delta(a) := \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1, x_2 > 0, x_1 + x_2 < a \}$$

$$\Box(1) := \{ (y_1, y_2) \in \mathbb{R}^2 \mid 0 < y_i < 1 \}.$$

- **d)** Construct a symplectic embedding of $\triangle(a) \times \square(1) \subset (\mathbb{R}^4, \omega_{st})$ as above into $B^4(a) \subset (\mathbb{R}^4, \omega_{st})!$ If you find this hard, construct a symplectic embedding $(0, a) \times (0, 1) \rightarrow B^2(a)$ first!
- e) Use these results to prove that given any integer $k \ge 1$ and any $b < \frac{a}{k}$, one can symplectically embed k^2 balls $B^4(b)$ disjointly into $B^4(a)$. Note that as b approaches $\frac{a}{k}$, the total volume of these images approaches the volume of $B^4(a)$.
- f) How do these results generalize to higher dimensions?