Winter 2014/15

Symplectic Geometry

Problem Set 1

- 1. Let g be a Riemannian metric on \mathbb{R}^n , and consider the Lagrangian function $L : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ given by $L(t, x, v) = g_x(v, v)$. Prove that the Euler-Lagrange equations for the corresponding variational problem are the geodesic equations for the metric g!
- 2. Prove that a linear subspace W of codimension 1 in a symplectic vector space (V, ω) is always coisotropic!
- **3.** a) Prove that $Sp(2, \mathbb{R})$ is diffeomorphic to the open solid torus $S^1 \times \mathbb{R}^2$!
 - **b)** Let $\Delta := \{\Psi \in \operatorname{Sp}(2,\mathbb{R}) \mid \det(\mathbb{1} \Psi) = 0\}$. Prove that $\operatorname{Sp}(2,\mathbb{R}) \setminus \Delta$ consists of two connected components, one diffeomorphic to \mathbb{R}^3 and the other diffeomorphic to $S^1 \times \mathbb{R}^2$!
- **4.** Let (V, ω) be a symplectic vector space and consider a coisotropic subspace $W \subset V$. Prove:
 - a) The quotient space $\overline{W} := W/W^{\perp}$ carries a natural symplectic form induced from V.
 - **b)** If $L \subset V$ is a Lagrangian subspace, then $\overline{L} := ((L \cap W) + W^{\perp})/W^{\perp}$ is a Lagrangian subspace of \overline{W} .