Seminar on the h-Cobordism Theorem

Definitions and Key Facts - Homology Theory

Christian Offen, Florian Noethen

November 11 and November 18, 2014

1. Homology

Let $\left(C_{i}\right)_{i \in \mathbb{Z}}$ be abelian groups and let $\partial_{i}: C_{i} \rightarrow C_{i-1}$ be homomorphisms such that $\partial_{i} \circ \partial_{i+1}=0$ for all $i \in \mathbb{Z}$. The sequence

$$
\ldots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \longrightarrow \ldots
$$

is called chain complex and the maps $\partial_{n}: C_{n} \rightarrow C_{n-1}$ are called boundary maps.
Elements in the kernel ker ∂_{n} of a boundary map ∂_{n} are called n-cycles and elements in the image of ∂_{n} are called boundaries.

The $n^{\text {th }}$-homology group with respect to the given chain complex is defined as the quotient

$$
H_{n}:=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1} .
$$

A collection of homomorphisms $\left(f_{i}: A_{i} \longrightarrow B_{i}\right)$ between chain complexes A and B which commute with the boundary maps, i.e. $\partial_{i}^{A} f_{i-1}=f_{i} \partial_{i}^{B}$, is called chain map.

2. Singular Homology

Let X be a topological space.

a. Definitions

Let v_{0}, \ldots, v_{n} be pairwise distinct points in \mathbb{R}^{n} such that $v_{1}-v_{0}, \ldots, v_{n}-v_{0}$ are linearly independent. The convex hull of v_{0}, \ldots, v_{n} is denoted by $\left[v_{0}, v_{1}, \ldots, v_{n}\right]$ and is called n-simplex. If e_{1}, \ldots, e_{n+1} is the standard basis of \mathbb{R}^{n+1}, the hull $\left[e_{1}, \ldots, e_{n+1}\right]$ is called standard n-simplex. It is denoted by Δ^{n}. Subsets of the form $\left[v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right]$ are identified with Δ^{n-1}. If $n<0$, then $\Delta^{n}=\emptyset$.

A continuous map $\sigma: \Delta^{n} \rightarrow X$ is called singular- n-simplex. A finite formal sum $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$ of singular- n-simplices σ_{α} is called singular- n-chain.

By $\Delta_{n}(X)$ one denotes the free abelian group consisting of all singular-n-chains. For $n \geq 1$ a group homomorphism

$$
\partial_{n}: \Delta_{n}(x) \rightarrow \Delta_{n-1}(X)
$$

is defined by

$$
\partial_{n}(\sigma)=\sum_{i=0}^{n}(-1)^{n} \sigma_{\left[\left[v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right]\right.} .
$$

For $n \leq 0$ let $\partial_{n}=0$. The sequence

$$
\ldots \longrightarrow \Delta_{2}(X) \xrightarrow{\partial_{2}} \Delta_{1}(X) \xrightarrow{\partial_{1}} \Delta_{0}(X) \xrightarrow{0} 0 \longrightarrow 0 \longrightarrow \ldots
$$

is called (singular) chain complex and the quotient

$$
H_{n}(X)=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1}
$$

is called the $n^{\text {th }}$-(singular) homology group of X.

b. Key Facts

Proposition. If $\left(X_{\beta}\right)_{\beta}$ are the path-components of X, then for all $n \in \mathbb{Z}$

$$
H_{n}(X) \cong \bigoplus_{\beta} H_{n}\left(X_{\beta}\right) .
$$

Proposition. If X is non-empty and path-connected, then $H_{0}(X) \cong \mathbb{Z}$.
Proposition. Let X be path-connected and let $\pi_{1}(X)$ denote the fundamental group of X. Moreover let $\left[\pi_{1}(X), \pi_{1}(X)\right]$ be the commutator subgroup of $\pi_{1}(X)$. Then

$$
H_{1}(X) \cong \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] .
$$

Theorem. Let $n \in \mathbb{Z}$. Every continuous map $f: X \rightarrow Y$ induces a homomorphism $f_{*}: H_{n}(X) \rightarrow$ $H_{n}(Y)$. If $g: X \rightarrow Y$ is another continuous map homotopic to f, then $f_{*}=g_{*}$.

Corollary. A homotopy equivalence $f: X \rightarrow Y$ induces an isomorphism $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$.

3. Homological Algebra

a. Definitions

Let $\left(G_{n}\right)_{n \in \mathbb{Z}}$ be groups and $f_{n}: G_{n} \rightarrow G_{n-1}$ be homomorphisms for all $n \in \mathbb{Z}$. The sequence

$$
\ldots \longrightarrow G_{n+1} \xrightarrow{f_{n+1}} G_{n} \xrightarrow{f_{n}} G_{n-1} \xrightarrow{f_{n-1}} G_{n-2} \longrightarrow \ldots
$$

is called exact if and only if the identity $\operatorname{im} f_{n+1}=\operatorname{ker} f_{n}$ holds for all $n \in \mathbb{Z}$.
An exact sequence of the form

$$
0 \longrightarrow G_{3} \xrightarrow{f_{3}} G_{2} \xrightarrow{f_{2}} G_{1} \longrightarrow 0
$$

is called a short exact sequence.
Let

$$
\begin{aligned}
& \ldots \xrightarrow{\partial} A_{n+1} \xrightarrow{\partial} A_{n} \xrightarrow{\partial} A_{n-1} \xrightarrow{\partial} \ldots \\
& \ldots \xrightarrow{\partial} B_{n+1} \xrightarrow{\partial} B_{n} \xrightarrow{\partial} B_{n-1} \xrightarrow{\partial} \ldots \\
& \ldots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots
\end{aligned}
$$

be chain complexes with homology groups denoted by $H_{n}(A), H_{n}(B)$ and $H_{n}(C)$. For $k \in \mathbb{Z}$ let i_{k} and j_{k} be homomorphisms such that the sequences

$$
0 \longrightarrow A_{k} \xrightarrow{i_{k}} B_{k} \xrightarrow{j_{k}} C_{k} \longrightarrow 0
$$

are exact for all $k \in \mathbb{Z}$. If the diagram

$$
\begin{aligned}
& \ldots \xrightarrow{\partial} \begin{array}{ccccccc}
C_{n+1} & \xrightarrow{\partial} & C_{n} & \xrightarrow{\partial} & C_{n-1} & \xrightarrow{\partial} & \ldots \\
& \downarrow & & \downarrow & & \downarrow & \\
& & & & & & \\
& & & & & & \\
& & & & &
\end{array}
\end{aligned}
$$

commutes, i.e. i and j are chain maps, then the chain complexes together with the chain maps are called short exact sequence of chain complexes.

b. Key Fact

Theorem. A short exact sequence of chain complexes induces a long exact sequence of homology groups
$\ldots \longrightarrow H_{n+1}(A) \xrightarrow{i_{*}} H_{n+1}(B) \xrightarrow{j_{*}} H_{n+1}(C) \xrightarrow{\partial} H_{n}(A) \xrightarrow{i_{*}} H_{n}(B) \xrightarrow{j_{*}} H_{n}(C) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow$

4. Relative and Reduced Homology

a. Definitions

For a subset $A \subset X$ we have $\Delta_{n}(A) \subset \Delta_{n}(X)$. The boundary map of X induces a boundary map on the quotient $\Delta_{n}(X) / \Delta_{n}(A)$. The associated homology groups are called relative homology groups and are denoted by $H_{n}(X, A)$. Note that by definition $H_{n}(X, \emptyset)=H_{n}(X)$.

The chain complex given by the sequence

$$
\ldots \longrightarrow \Delta_{2}(X) \xrightarrow{\partial_{2}} \Delta_{1}(X) \xrightarrow{\partial_{1}} \Delta_{0}(X) \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \longrightarrow \ldots
$$

is called augmented (singular) chain complex and it's homology groups $\tilde{H}_{n}(X)$ are called reduced (singular) homology groups, where ϵ is defined as $\epsilon\left(\sum_{\alpha} n_{\alpha} \sigma_{\alpha}\right)=\sum_{\alpha} n_{\alpha}$.

Reduced homology can be understood as subtracting one \mathbb{Z}-factor in dimension 0 . If X is nonempty, then $\tilde{H}_{n}(X)=H_{n}(X)$ for $n \neq 0$ and $H_{0}(X) \cong \tilde{H}_{0}(X) \oplus \mathbb{Z}$.

For $\emptyset \neq A \subset X$ one defines $\tilde{H}_{n}(X, A):=H_{n}(X, A)$.
The pair (X, A) is called good, if A is closed in X and there exists a neighborhood of A which deformation retracts to A.

b. Key Fact

Theorem. We have a long exact sequence of a pair (X, A) in singular homology.

$$
\ldots \longrightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(X) \xrightarrow{j_{*}} H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \ldots
$$

Here $i: A \hookrightarrow X$ is the inclusion and $j: \Delta_{n}(X) \longrightarrow \Delta_{n}(X) / \Delta_{n}(A)$ the quotient map.
Proposition. The long exact sequence of a pair (X, A) in singular homology also holds for reduced homology.

Proposition. If (X, A) is a good pair, the quotient map $q: X \longrightarrow X / A$ induces an isomorphism

$$
q_{*}: H_{n}(X, A) \xrightarrow{\sim} H_{n}(X / A, A / A) \cong \tilde{H}_{n}(X / A)
$$

Theorem. For good pairs, there is an exact sequence

$$
\ldots \longrightarrow \tilde{H}_{n}(A) \xrightarrow{i_{*}} \tilde{H}_{n}(X) \xrightarrow{q_{*}} \tilde{H}_{n}(X / A) \xrightarrow{\partial} \tilde{H}_{n-1}(A) \longrightarrow \ldots
$$

Corollary. The reduced homology of the n-sphere S^{n} is given by

$$
\tilde{H}_{k}\left(S^{n}\right) \cong \begin{cases}\mathbb{Z}, & \text { if } k=n \\ 0, & \text { if } k \neq n\end{cases}
$$

Corollary. Given topological spaces X_{α} with base points $x_{\alpha} \in X_{\alpha}$, such that ($X_{\alpha},\left\{x_{\alpha}\right\}$) are good pairs, the inclusions $i_{\alpha}: X_{\alpha} \hookrightarrow \bigvee_{\beta} X_{\beta}$ induce an isomorphism

$$
\oplus_{\alpha}\left(i_{\alpha}\right)_{*}: \bigoplus_{\alpha} \tilde{H}_{n}\left(X_{\alpha}\right) \xrightarrow{\sim} \tilde{H}_{n}\left(\bigvee_{\alpha} X_{\alpha}\right)
$$

Theorem (Excision). Let $Z \subset A \subset X$ such that $\bar{Z} \subset \operatorname{int}(A)$. Assuming this, the inclusion $(X \backslash Z, A \backslash Z) \hookrightarrow(X, A)$ induces an isomorphism

$$
H_{n}(X \backslash Z, A \backslash Z) \xrightarrow{\sim} H_{n}(X, A)
$$

Theorem (Mayer-Vietoris Sequence). Let $A, B \subset X$ such that $\operatorname{int}(A) \cup \operatorname{int}(B)=X$. Then we have a long exact sequence with homomorphisms induced by the inclusions

$$
\ldots \longrightarrow H_{n}(A \cap B) \xrightarrow{\left(i_{A}\right) * \oplus\left(i_{B}\right)_{*}} H_{n}(A) \oplus H_{n}(B) \xrightarrow{\left(j_{A}\right)_{*}-\left(j_{B}\right)_{*}} H_{n}(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \longrightarrow \ldots
$$

5. Cellular Homology

a. Definitions

In this section X always is a CW-complex. We denote its n-skeleton by X^{n}.
Consider the boundary map $\partial_{n+1}: H_{n+1}\left(X^{n+1}, X^{n}\right) \longrightarrow H_{n}\left(X^{n}\right)$ from the long exact sequence of the pair $\left(X^{n+1}, X^{n}\right)$ and the map $j_{n}: H_{n}\left(X^{n}\right) \longrightarrow H_{n}\left(X^{n}, X^{n-1}\right)$, induced from the quotient map, in the long exact sequence of the pair $\left(X^{n}, X^{n-1}\right)$. Let $d_{n+1}:=j_{n} \partial_{n+1}$ be the composition. We get a chain complex

$$
\ldots \longrightarrow H_{n+1}\left(X^{n+1}, X^{n}\right) \xrightarrow{d_{n+1}} H_{n}\left(X^{n}, X^{n-1}\right) \xrightarrow{d_{n}} H_{n-1}\left(X^{n-1}, X^{n-2}\right) \longrightarrow \ldots
$$

called cellular chain complex. It's homology is called cellular homology.

b. Key Facts

Lemma. The following statements hold true for singular homology
a) $H_{k}\left(X^{n}, X^{n-1}\right)$ is 0 for $k \neq n$ and free abelian with a basis in one-to-one correspondence with the n-cells of X for $k=n$.
b) For $k>n$ we have $H_{k}\left(X^{n}\right)=0$.
c) For $k<n$ the inclusion $i: X^{n} \hookrightarrow X$ induces an isomorphism $i_{*}: H_{k}\left(X^{n}\right) \xrightarrow{\sim} H_{k}(X)$.

Proposition. The cellular chain complex as defined above is indeed a chain complex, i.e. $d_{n} d_{n+1}=0$.

Theorem. Cellular homology is isomorphic to singular homology.
Corollary. Cellular homology is independent of the choice of a particular CW-structure for X.

Corollary.

i) $H_{n}(X)=0$ if X has no n-cells.
ii) The number of generators of $H_{n}(X)$ is at most the number of n-cells in X.
iii) If X has no two cells in adjacent dimensions, then $H_{n}(X) \cong H_{n}\left(X^{n}, X^{n-1}\right)$.

Using the identification of $H_{n}\left(X^{n}, X^{n-1}\right)$ with the free abelian group generated by the n-cells e_{α}^{n}, we can compute the boundary map d_{n} differently.

Proposition. Let $d_{\alpha \beta}$ be the degree of the map $S_{\alpha}^{n-1} \longrightarrow X^{n-1} \longrightarrow S_{\beta}^{n-1}$ that is the composition of the attaching map of e_{α}^{n} restricted to $\partial e_{\alpha}^{n}=S_{\alpha}^{n-1}$ with the quotient map collapsing $X^{n-1} \backslash \operatorname{int}\left(e_{\beta}^{n-1}\right)$ to a point. Then the boundary map can be computed using the formula $d_{n}\left(e_{\alpha}^{n}\right)=\sum_{\beta} d_{\alpha \beta} e_{\beta}^{n-1}$.

While our presentation mostly stems from Hatchers book, we found Bredon taking a more general approach to the topic, which has some nice results on how to compute degrees of maps $S^{n} \longrightarrow S^{n}$.

References

(1) G. Bredon, Topology and Geometry, Springer GTM 139, 1993
(2) A. Hatcher, Algebraic topology, http://www.math cornell.edu/~hatcher/AT/ATpage.html

