Seminar on the h-Cobordism Theorem

Definitions and Key Facts - Homology Theory

Christian Offen, Florian Noethen

November 11 and November 18, 2014

1. Homology

Let $(C_i)_{i \in \mathbb{Z}}$ be abelian groups and let $\partial_i \colon C_i \to C_{i-1}$ be homomorphisms such that $\partial_i \circ \partial_{i+1} = 0$ for all $i \in \mathbb{Z}$. The sequence

 $\ldots \longrightarrow C_{n+1} \stackrel{\partial_{n+1}}{\longrightarrow} C_n \stackrel{\partial_n}{\longrightarrow} C_{n-1} \stackrel{\partial_{n-1}}{\longrightarrow} C_{n-2} \longrightarrow \ldots$

is called **chain complex** and the maps $\partial_n : C_n \to C_{n-1}$ are called **boundary maps**.

Elements in the kernel ker ∂_n of a boundary map ∂_n are called *n*-cycles and elements in the image of ∂_n are called **boundaries**.

The n^{th} -homology group with respect to the given chain complex is defined as the quotient

$$H_n := \ker \partial_n / \operatorname{im} \partial_{n+1}.$$

A collection of homomorphisms $(f_i : A_i \longrightarrow B_i)$ between chain complexes A and B which commute with the boundary maps, i.e. $\partial_i^A f_{i-1} = f_i \partial_i^B$, is called **chain map**.

2. Singular Homology

Let X be a topological space.

a. Definitions

Let $v_0, ..., v_n$ be pairwise distinct points in \mathbb{R}^n such that $v_1 - v_0, ..., v_n - v_0$ are linearly independent. The convex hull of $v_0, ..., v_n$ is denoted by $[v_0, v_1, ..., v_n]$ and is called *n*-simplex. If $e_1, ..., e_{n+1}$ is the standard basis of \mathbb{R}^{n+1} , the hull $[e_1, ..., e_{n+1}]$ is called **standard** *n*-simplex. It is denoted by Δ^n . Subsets of the form $[v_0, ..., v_{i-1}, v_{i+1}, ..., v_n]$ are identified with Δ^{n-1} . If n < 0, then $\Delta^n = \emptyset$.

A continuous map $\sigma: \Delta^n \to X$ is called **singular**-*n*-simplex. A finite formal sum $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$ of singular-*n*-simplices σ_{α} is called **singular**-*n*-chain.

By $\Delta_n(X)$ one denotes the free abelian group consisting of all singular-n-chains. For $n \ge 1$ a group homomorphism

$$\partial_n \colon \Delta_n(x) \to \Delta_{n-1}(X)$$

is defined by

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^n \sigma_{|[v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n]}.$$

For $n \leq 0$ let $\partial_n = 0$. The sequence

$$\dots \longrightarrow \Delta_2(X) \xrightarrow{\partial_2} \Delta_1(X) \xrightarrow{\partial_1} \Delta_0(X) \xrightarrow{0} 0 \longrightarrow 0 \longrightarrow \dots$$

is called (singular) chain complex and the quotient

$$H_n(X) = \ker \partial_n / \operatorname{im} \partial_{n+1}$$

is called the n^{th} -(singular) homology group of X.

b. Key Facts

Proposition. If $(X_{\beta})_{\beta}$ are the path-components of X, then for all $n \in \mathbb{Z}$

$$H_n(X) \cong \bigoplus_{\beta} H_n(X_{\beta})$$

Proposition. If X is non-empty and path-connected, then $H_0(X) \cong \mathbb{Z}$.

Proposition. Let X be path-connected and let $\pi_1(X)$ denote the fundamental group of X. Moreover let $[\pi_1(X), \pi_1(X)]$ be the commutator subgroup of $\pi_1(X)$. Then

$$H_1(X) \cong \pi_1(X) / [\pi_1(X), \pi_1(X)].$$

Theorem. Let $n \in \mathbb{Z}$. Every continuous map $f: X \to Y$ induces a homomorphism $f_*: H_n(X) \to H_n(Y)$. If $g: X \to Y$ is another continuous map homotopic to f, then $f_* = g_*$.

Corollary. A homotopy equivalence $f: X \to Y$ induces an isomorphism $f_*: H_n(X) \to H_n(Y)$.

3. Homological Algebra

a. Definitions

Let $(G_n)_{n\in\mathbb{Z}}$ be groups and $f_n: G_n \to G_{n-1}$ be homomorphisms for all $n \in \mathbb{Z}$. The sequence

$$\dots \longrightarrow G_{n+1} \xrightarrow{f_{n+1}} G_n \xrightarrow{f_n} G_{n-1} \xrightarrow{f_{n-1}} G_{n-2} \longrightarrow \dots$$

is called **exact** if and only if the identity im $f_{n+1} = \ker f_n$ holds for all $n \in \mathbb{Z}$.

An exact sequence of the form

$$0 \longrightarrow G_3 \xrightarrow{f_3} G_2 \xrightarrow{f_2} G_1 \longrightarrow 0$$

is called a short exact sequence.

Let

$$\dots \xrightarrow{\partial} A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \xrightarrow{\partial} \dots$$
$$\dots \xrightarrow{\partial} B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \xrightarrow{\partial} \dots$$
$$\dots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \dots$$

be chain complexes with homology groups denoted by $H_n(A)$, $H_n(B)$ and $H_n(C)$. For $k \in \mathbb{Z}$ let i_k and j_k be homomorphisms such that the sequences

$$0 \longrightarrow A_k \xrightarrow{i_k} B_k \xrightarrow{j_k} C_k \longrightarrow 0$$

are exact for all $k \in \mathbb{Z}$. If the diagram

commutes, i.e. i and j are chain maps, then the chain complexes together with the chain maps are called **short exact sequence of chain complexes**.

b. Key Fact

Theorem. A short exact sequence of chain complexes induces a **long exact sequence** of homology groups

$$\dots \longrightarrow H_{n+1}(A) \xrightarrow{i_*} H_{n+1}(B) \xrightarrow{j_*} H_{n+1}(C) \xrightarrow{\partial} H_n(A) \xrightarrow{i_*} H_n(B) \xrightarrow{j_*} H_n(C) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \dots$$

4. Relative and Reduced Homology

a. Definitions

For a subset $A \subset X$ we have $\Delta_n(A) \subset \Delta_n(X)$. The boundary map of X induces a boundary map on the quotient $\Delta_n(X)/\Delta_n(A)$. The associated homology groups are called **relative homology groups** and are denoted by $H_n(X, A)$. Note that by definition $H_n(X, \emptyset) = H_n(X)$.

The chain complex given by the sequence

$$\dots \longrightarrow \Delta_2(X) \xrightarrow{\partial_2} \Delta_1(X) \xrightarrow{\partial_1} \Delta_0(X) \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \longrightarrow \dots$$

is called **augmented** (singular) chain complex and it's homology groups $\tilde{H}_n(X)$ are called reduced (singular) homology groups, where ϵ is defined as $\epsilon(\sum_{\alpha} n_{\alpha} \sigma_{\alpha}) = \sum_{\alpha} n_{\alpha}$.

Reduced homology can be understood as subtracting one \mathbb{Z} -factor in dimension 0. If X is nonempty, then $\tilde{H}_n(X) = H_n(X)$ for $n \neq 0$ and $H_0(X) \cong \tilde{H}_0(X) \oplus \mathbb{Z}$.

For $\emptyset \neq A \subset X$ one defines $\tilde{H}_n(X, A) := H_n(X, A)$.

The pair (X, A) is called **good**, if A is closed in X and there exists a neighborhood of A which deformation retracts to A.

b. Key Fact

Theorem. We have a long exact sequence of a pair (X, A) in singular homology.

$$\dots \longrightarrow H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X, A) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \dots$$

Here $i: A \hookrightarrow X$ is the inclusion and $j: \Delta_n(X) \longrightarrow \Delta_n(X)/\Delta_n(A)$ the quotient map.

Proposition. The long exact sequence of a pair (X, A) in singular homology also holds for reduced homology.

Proposition. If (X, A) is a good pair, the quotient map $q: X \longrightarrow X/A$ induces an isomorphism

 $q_*: H_n(X, A) \xrightarrow{\sim} H_n(X/A, A/A) \cong \tilde{H}_n(X/A)$

Theorem. For good pairs, there is an exact sequence

$$\dots \longrightarrow \tilde{H}_n(A) \xrightarrow{i_*} \tilde{H}_n(X) \xrightarrow{q_*} \tilde{H}_n(X/A) \xrightarrow{\partial} \tilde{H}_{n-1}(A) \longrightarrow \dots$$

Corollary. The reduced homology of the *n*-sphere S^n is given by

$$\tilde{H}_k(S^n) \cong \begin{cases} \mathbb{Z}, & \text{if } k = n \\ 0, & \text{if } k \neq n \end{cases}$$

Corollary. Given topological spaces X_{α} with base points $x_{\alpha} \in X_{\alpha}$, such that $(X_{\alpha}, \{x_{\alpha}\})$ are good pairs, the inclusions $i_{\alpha} : X_{\alpha} \hookrightarrow \bigvee_{\beta} X_{\beta}$ induce an isomorphism

$$\oplus_{\alpha}(i_{\alpha})_{*}:\bigoplus_{\alpha}\tilde{H}_{n}(X_{\alpha}) \xrightarrow{\sim} \tilde{H}_{n}\left(\bigvee_{\alpha}X_{\alpha}\right)$$

Theorem (Excision). Let $Z \subset A \subset X$ such that $\overline{Z} \subset int(A)$. Assuming this, the inclusion $(X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$ induces an isomorphism

$$H_n(X \setminus Z, A \setminus Z) \xrightarrow{\sim} H_n(X, A)$$

Theorem (Mayer-Vietoris Sequence). Let $A, B \subset X$ such that $int(A) \cup int(B) = X$. Then we have a long exact sequence with homomorphisms induced by the inclusions

$$\dots \longrightarrow H_n(A \cap B) \xrightarrow{(i_A)_* \oplus (i_B)_*} H_n(A) \oplus H_n(B) \xrightarrow{(j_A)_* - (j_B)_*} H_n(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \longrightarrow \dots$$

5. Cellular Homology

a. Definitions

In this section X always is a CW-complex. We denote its *n*-skeleton by X^n .

Consider the boundary map $\partial_{n+1} : H_{n+1}(X^{n+1}, X^n) \longrightarrow H_n(X^n)$ from the long exact sequence of the pair (X^{n+1}, X^n) and the map $j_n : H_n(X^n) \longrightarrow H_n(X^n, X^{n-1})$, induced from the quotient map, in the long exact sequence of the pair (X^n, X^{n-1}) . Let $d_{n+1} := j_n \partial_{n+1}$ be the composition. We get a chain complex

$$\dots \longrightarrow H_{n+1}(X^{n+1}, X^n) \xrightarrow{d_{n+1}} H_n(X^n, X^{n-1}) \xrightarrow{d_n} H_{n-1}(X^{n-1}, X^{n-2}) \longrightarrow \dots$$

called **cellular chain complex**. It's homology is called **cellular homology**.

b. Key Facts

Lemma. The following statements hold true for singular homology

- a) $H_k(X^n, X^{n-1})$ is 0 for $k \neq n$ and free abelian with a basis in one-to-one correspondence with the *n*-cells of X for k = n.
- b) For k > n we have $H_k(X^n) = 0$.
- c) For k < n the inclusion $i: X^n \hookrightarrow X$ induces an isomorphism $i_*: H_k(X^n) \xrightarrow{\sim} H_k(X)$.

Proposition. The cellular chain complex as defined above is indeed a chain complex, i.e. $d_n d_{n+1} = 0$.

Theorem. Cellular homology is isomorphic to singular homology.

Corollary. Cellular homology is independent of the choice of a particular CW-structure for X.

Corollary.

i) $H_n(X) = 0$ if X has no *n*-cells.

- ii) The number of generators of $H_n(X)$ is at most the number of *n*-cells in X.
- iii) If X has no two cells in adjacent dimensions, then $H_n(X) \cong H_n(X^n, X^{n-1})$.

Using the identification of $H_n(X^n, X^{n-1})$ with the free abelian group generated by the *n*-cells e^n_{α} , we can compute the boundary map d_n differently.

Proposition. Let $d_{\alpha\beta}$ be the degree of the map $S_{\alpha}^{n-1} \longrightarrow X^{n-1} \longrightarrow S_{\beta}^{n-1}$ that is the composition of the attaching map of e_{α}^{n} restricted to $\partial e_{\alpha}^{n} = S_{\alpha}^{n-1}$ with the quotient map collapsing $X^{n-1}\setminus \operatorname{int}(e_{\beta}^{n-1})$ to a point. Then the boundary map can be computed using the formula $d_{n}(e_{\alpha}^{n}) = \sum_{\beta} d_{\alpha\beta} e_{\beta}^{n-1}$.

While our presentation mostly stems from Hatchers book, we found Bredon taking a more general approach to the topic, which has some nice results on how to compute degrees of maps $S^n \longrightarrow S^n$.

References

- (1) G. Bredon, Topology and Geometry, Springer GTM 139, 1993
- (2) A. Hatcher, Algebraic topology, http://www.math.cornell.edu/~hatcher/AT/ATpage.html