Universität Hamburg Janko Latschev, Fabian Kirchner, Giorgio Laguzzi

TOPOLOGIE

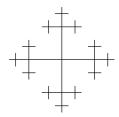
Übungsaufgaben 13

Diese Aufgaben werden auf Wunsch in der letzten Übung besprochen, jedoch nicht korrigiert.

- 1. Zeigen Sie, dass die universelle Überlagerung $\widetilde{p}:\widetilde{B}\to B$ ihren Namen zurecht trägt, indem Sie folgende Aussage beweisen: Ist $p:E\to B$ irgendeine Überlagerung von B mit wegzusammenhängendem Totalraum E, so existiert eine Überlagerung $q:\widetilde{B}\to E$ so dass $\widetilde{p}=p\circ q!$
- 2. Beweisen Sie, dass der folgende Raum $\widetilde{X_2}$ der Totalraum der universellen Überlagerung von $X_2 = S^1 \vee S^1$, indem Sie
 - a) zeigen, dass der Raum einfach zusammenhängend ist, und
 - **b)** eine Überlagerung $\widetilde{p}:\widetilde{X_2}\to X_2$ konstruieren.

Konstruktion von $\widetilde{X_2}$: Wir konstruieren zunächst eine Folge von Graphen. G_0 sei der Graph mit vier Kanten und fünf Eckpunkten x_0,\ldots,x_4 , in dem jede der Ecken x_1,\ldots,x_4 durch eine Kante der Länge 1 mit x_0 verbunden ist. G_1 entsteht aus G_0 durch hinzunehmen von 12 zusätzlichen Punkten x_{i1},x_{i2},x_{i3} für $i=1,\ldots,4$, welche jeweils durch eine Kante der Länge 1 mit x_i verbunden werden. Im allgemeinen entsteht G_n aus G_{n-1} , indem an die insgesamt $4\cdot 3^{n-1}$ freien Ecken $x_{i_1...i_n}$ jeweils drei neue Kanten der Länge 1 angesetzt werden. Wir haben natürliche Einbettungen

$$G_0 \subset G_1 \subset G_2 \subset \dots$$



Die Abbildung zeigt das Bild einer Einbettung von G_2 in \mathbb{R}^2 . Wir setzen nun $\widetilde{X_2} := \bigcup_{n \in \mathbb{N}} G_n$, versehen mit der Finaltopologie bezüglich der Einbettungen $G_n \subset \widetilde{X_2}$.

Bemerkung: Es folgt aus Aufgabe 1), dass dieser Totalraum auch die anderen X_k mit k > 2 universell überlagert.

- 3. Beschreiben Sie die Äquivalenzklassen von zusammenhängenden Überlagerungen der Basis $B=\mathbb{R}P^2\vee\mathbb{R}P^2!$
- 4. Wie zerschneidet man ein Bagel in zwei Hälften, die eine Hopf-Verschlingung bilden?

