Summer 2025

DIFFERENTIAL TOPOLOGY

Problem Set 2

- 1. What are the possible degrees of maps from T^2 to itself? Are homotopy classes of such maps classified by their degree?
- **2.** De Rham cohomology of a manifold M is defined for any $k \ge 0$ as

$$H^k_{\mathrm{dR}}(M) := \frac{\ker d : \Omega^k(M) \to \Omega^{k+1}(M)}{\operatorname{Im} d : \Omega^{k-1}(M) \to \Omega^k(M)}.$$

Here $\Omega^k(M)$ denotes the real vector space of smooth differential k-forms on M. The aim of this exercise is to prove that integration provides an isomorphism of the top-dimensional de Rham cohomology group $H^n_{dR}(M)$ of a closed, connected and oriented n-dimensional manifold with \mathbb{R} . This fact was used in Problem 15 on the first problem set.

a) Prove by induction on n that if $f : \mathbb{R}^n \to \mathbb{R}$ is a function with compact support and $\int_{\mathbb{R}^n} f(x) dx_1 \dots dx_n = 0$, then there exist functions $u_i : \mathbb{R}^n \to \mathbb{R}, i \in \{1, \dots, n\}$ with compact support such that $f = \sum_i \frac{\partial u_i}{\partial x_i}$.

Hint: The case n = 1 is an easy consequence of the fundamental theorem of calculus. For the induction step consider the auxiliary function

$$g(x_2,\ldots,x_n) := \int_{\mathbb{R}} f(x_1,x_2,\ldots,x_n) \, dx_1,$$

and observe that by Fubini's theorem one can apply the induction hypothesis to obtain $u_2 \ldots, u_n$. To get the remaining function u_1 , adjust

$$w_1(x_1,...,x_n) := \int_{-\infty}^{x_1} f(t,x_2,...,x_n) dt$$

by subtracting a suitably cut off version of g.

- b) Deduce from this that every compactly supported form $\omega \in \Omega^n(\mathbb{R}^n)$ with vanishing integral is the differential of a compactly supported form $\eta \in \Omega^{n-1}(\mathbb{R}^n)$.
- c) Prove that for a closed connected oriented manifold M there are finitely many open sets U_0, U_1, \ldots, U_r diffeomorphic to balls and covering M and diffeomorphisms $\varphi_i : M \to M$ isotopic to the identity with $\varphi_i(U_0) = U_i$.
- d) Prove that for any closed form $\alpha \in \Omega^n(M)$ with compact support in some U_i , $\varphi_i^* \alpha$ and α are cohomologous.

Hint: Consider an isotopy $\Phi_t : M \to M$, $t \in [0,1]$ with $\Phi_0 = id_M$ and $\Phi_1 = \varphi_i$. Now argue that for $t, t' \in [0,1]$ sufficiently close, $\Phi_t^* \alpha$ and $\Phi_{t'}^* \alpha$ will both have support in $\Phi_t^{-1}(U_i)$ and have the same integral, and so by part **b**) they must be cohomologous. Finish with a standard open-and-closed argument.

e) Now complete the proof of the original claim by using a partition of unity subordinate to the cover $\{U_i\}_{i=0,...,r}$ of M from part c) to break up a given form $\omega \in \Omega^n(M)$ whose integral over M vanishes into components ω_i with support in U_i and applying the result of part b) to the form

$$ilde{\omega} = \sum_{i=0}^n \varphi_i^* \omega_i$$

with support in U_0 , which by part d) is cohomologous to ω .

- **3.** Suppose $p: E \to B$ is a vector bundle over a compact base B.
 - a) Prove that for $N \in \mathbb{N}$ sufficiently large there exists a surjective bundle morphism $\underline{\mathbb{R}}^N \to E$.
 - b) Prove that for $K \in \mathbb{N}$ sufficiently large there exists an injective bundle morphism $E \to \mathbb{R}^K$.
- **4.** Prove the collar neighborhood theorem: If M is a smooth manifold with compact boundary $B = \partial M$, then B has a neighborhood $N \subseteq M$ in M diffeomorphic to $B \times [0, 1)$ via a diffeomorphism sending $p \in B$ to $(p, 0) \in B \times [0, 1)$.
- 5. Prove that for any vector bundle $E \to B$ the vector bundle $E \oplus E \to B$ is orientable. Deduce as a consequence that the total space TM of the tangent bundle of any smooth manifold M is orientable, regardless of the orientability of M itself.

6. Let f : M → M' be a smooth map between smooth manifolds which is transverse to the submanifold Z' ⊆ M'. We already know that in this case the inverse image Z := f⁻¹(Z') ⊆ M is a smooth submanifold of the same codimension as Z'. Prove that the normal bundle of Z ⊆ M is the pullback of the normal bundle of Z' ⊆ M'. Note that for Z = {q} a regular value this implies that f⁻¹(q) ⊆ M has trivial normal bundle. So while many interesting submanifolds arise as preimages of regular values under a smooth map, "most" submanifolds cannot be obtained in this way, simply because normal bundles are typically not trivial.

- a) Prove that Sⁿ admits a nonvanishing vector field if and only if n is odd.
 Hint: For the "only if" part, use such a vector field to construct a homotopy from the identity to the antipodal map.
 - b) Suppose M and N are manifolds of positive dimension such that $TM \oplus \underline{\mathbb{R}}$ and $TN \oplus \underline{\mathbb{R}}$ are trivial, and assume that TM has a nonvanishing section. Prove that under these assumptions $T(M \times N)$ is a trivial bundle.
 - c) Deduce that a product of two or more spheres with positive dimensions has trivial tangent bundle if and only if at least one of them has odd dimension.
 - d) Illustrate your proof by constructing explicit trivializations of $T(S^1 \times S^2)$ and $T(S^2 \times S^5)$.
- 8. The aim of this exercise is to complete the proof of the proposition formulated in class that the connected sum of connected manifolds of the same dimension n > 0 is well-defined up to diffeomorphism.

- a) Use the isotopy extension trick (suitably applied to $\beta^{-1} \circ \alpha$) to prove that for any two orientation-reversing diffeomorphisms $\alpha : (0, 1) \to (0, 1)$ and $\beta : (0, 1) \to (0, 1)$ there exists a diffeomorphism $g : (0, 1) \to (0, 1)$ with compact support such that α and $\beta \circ g$ agree on the interval $(\frac{1}{4}, \frac{3}{4})$.
- b) Now use this together with the fact proved in class that the identifications in performing the connected sum can be done on a smaller closed annulus inside $B(0,1)\setminus\{0\}$ to prove that for ball embeddings $h_1: B(0,1) \to M_1$ and $h_2: B(0,1) \to M_2$ there is a diffeomorphism

$$M_1 \#_{(h_1,h_2,\alpha)} M_2 \cong M_1 \#_{(h_1,h_2,\beta)} M_2$$

- **9.** Prove that if M is any closed oriented manifold, then M#(-M) bounds a compact oriented manifold of one dimension higher.
- 10. a) Use van Kampen's theorem to prove that for connected manifolds M_1 and M_2 of dimension $n \ge 3$ we have

$$\pi_1(M_1 \# M_2) = \pi_1(M_1) \star \pi_1(M_2),$$

where \star denotes free product of groups.

b) Use this to prove that for $n \ge 3$ the k-fold connected sums

$$#^k(S^1 \times S^{n-1})$$

for different values of k are pairwise non-diffeomorphic.

c) (Assuming you know how to compute homology or cohomology.) Prove more generally that for $n \ge 2$ and integers $0 < \ell_i < n$ and $k_i \in \mathbb{N}$ there is a diffeomorphism

$$\#^{k_1}(S^{\ell_1} \times S^{n-\ell_1}) \cong \#^{k_2}(S^{\ell_2} \times S^{n-\ell_2})$$

if and only if $k_1 = k_2$ and either $\ell_1 = \ell_2$ or $\ell_1 = n - \ell_2$.