Symplectic Geometry

Problem Set 7

- 1. Give a proof of Darboux' theorem for contact manifold using Moser's argument, similar to the strategy used in the proof of Gray stability during the lecture.
- 2. Let (W, ξ) be a coorientable contact manifold, i.e. one which admits global contact forms. Prove that a contact vector field Y on W will be the Reeb vector field for some contact form α defining ξ if and only if Y is everywhere transverse to ξ .
- **3.** Let $W \subseteq (M, \omega)$ be a regular level set of the function $H: M \to \mathbb{R}$. Assume that W is also a hypersurface of contact type, so there exists a vector field Y defined near W satisfying $Y \cap W$ and $L_Y \omega = \omega$. We have seen that $\alpha = (\iota_Y \omega)|_W$ is a contact form on W. Prove the assertion made in class that the Reeb vector field of α and the restriction of the Hamiltonian vector field X_H to W are proportional.
- **4.** (Legendrian submanifolds) Let (W, ξ) be a contact manifold of dimension 2n + 1. Prove that a submanifold $S \subseteq W$ which is everywhere tangent to ξ must satisfy dim $S \leq n$.

Remark: If dim S = n, then S is called a Legendrian submanifold of W.

- **5.** (Legendrian knots) We consider the standard contact structure $\xi = \ker(dz ydx)$ on \mathbb{R}^3 .
 - a) Prove that every smooth curve $\gamma:[0,1]\to\mathbb{R}^2,\ \gamma(t)=(x(t),y(t))$ admits a unique lift $\widetilde{\gamma}:[0,1]\to\mathbb{R}^3$ which starts at $\widetilde{\gamma}(0)=(x(0),y(0),0)$ and is tangent to ξ .
 - b) Which closed curves in the plane lift to closed curves in \mathbb{R}^3 ?
 - c) Compute the lift of $\gamma(t) = (\sin 2\pi t, \sin 4\pi t)$ explicitly and sketch its image in \mathbb{R}^3 .