Floer Theory

Problem Set 2

1. Let $m \geq 1$ be an integer, and consider the function $f_{m}: \mathbb{C} P^{1} \rightarrow \mathbb{R}$ given as

$$
f_{m}\left(\left[z_{0}: z_{1}\right]\right)=\frac{\left|z_{0}^{m}+z_{1}^{m}\right|^{2}}{\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}\right)^{m}}=\frac{\left|z^{m}+1\right|^{2}}{\left(|z|^{2}+1\right)^{m}}
$$

in homogeneous coordinates and in the inhomogeneous coordinate $z=\frac{z_{1}}{z_{0}}$ on the open subset $U_{0}:=\left\{z_{0} \neq 0\right\} \cong \mathbb{C}$, respectively.
a) Find the critical points of f_{m} and prove that for $m \geq 2$ it is a Morse function. Compute the indices of the critical points. What happens for $m=1$?
b) Give a qualitative picture of the gradient flow of f_{m} (for low values of $m \geq 2$) with respect to the usual (Fubini-Study) metric on $\mathbb{C} P^{1}$ in the open subset U_{0}.
c) Determine the boundary operator in the Morse complex of f_{m} and compute the Morse homology.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function with a Morse critical point of index $k \in(0, n)$ at $p=0$, and let g be any metric on \mathbb{R}^{n}. For sufficiently small $r>0$ the stable manifold $W^{s}(p)$ and the unstable manifold $W^{u}(p)$ will intersect the sphere $S_{r}(0)$ of radius r around 0 in smoothly embedded spheres S and U of dimensions $n-k-1$ and $k-1$, respectively. There is also a subset $T \subset S_{r}(0)$ where the gradient of f with respect to g is tangent to $S_{r}(0)$ (for the standard metric, T would be diffeomorphic to $S \times U)$.
Find elementary proofs of the following statements:
a) For every $\tau>0$ there is some $\delta>0$ such that the flow line of any point $x \in S_{r}(0)$ of distance less than δ to S stays in the ball $B_{r}(0)$ for at least time τ.
b) For every $\epsilon>0$ there is a $\delta>0$ such that if $x \in S_{r}(0)$ has distance less than δ to S, then the point $y \in S_{r}(0)$ where the flow line of x exits the ball $B_{r}(0)$ has distance less than ϵ to U.
3. Let $f: M \rightarrow \mathbb{R}$ be a Morse function and g a metric such that (f, g) is a MorseSmale pair, and so the Morse complex is defined. For $a \in \mathbb{R}$ we set

$$
M^{\leq a}:=\{x \in M: f(x) \leq a\}
$$

a) Prove that if the interval $[a, b]$ contains no critical values, then $M^{\leq a}$ and $M^{\leq b}$ are diffeomorphic.
b) Let b be a regular value of f. Observe that the critical points $p \in \operatorname{Crit}(f)$ with $f(p)<b$ form a subcomplex $C M^{\leq b}(f, g)$ of the Morse complex. What does the homology of this subcomplex compute?
c) Now given regular values $a<b$, one can form the quotient complex

$$
C M^{[a, b]}:=C M^{\leq b} / C M^{\leq a} .
$$

What does its homology compute?
Remark: The answers to these questions use more than what we have discussed in class. If you have difficulties getting started, look at simple examples first. Also, once you have tried a few things and have a conjecture for the answers, feel free to look at the literature for clues/proofs.

