Summer 2019

DIFFERENTIAL TOPOLOGY

Problem Set 3

Here is a third set of problems related to the material of the course. If you want to get feedback on your solution to a particular exercise or have questions, please contact me by mail.

- **1.** Suppose Σ_1 and Σ_2 are two closed oriented surfaces of genus g_1 and g_2 , respectively.
 - a) Let $i_j : S^0 \to \Sigma_j$ be embeddings with images $S_j \subset \Sigma_j$. Describe the result of gluing Σ_1 and Σ_2 along these two submanifolds. Does the result depend on the embeddings?
 - **b)** Now consider embeddings $i_j : S^1 \to \Sigma_j$ with images $S_j \subset \Sigma_j$ instead, and answer the same questions.
- **2.** Let M be a manifold of dimension n, and let $D \subseteq M$ be an embedded closed ball. Removing the interior of D we obtain a manifold M' whose boundary is identified with $S^{n-1} = \partial D$. Let P be the space obtained from M' by identifying antipodal points of $\partial M'$. Prove that

$$P = M \# \mathbb{R}P^n$$

- **3.** a) Prove that surgery on S^3 along the unknot $U \cong S^1 = S^3 \cap (\mathbb{R}^2 \times \{0\}) \subseteq S^3 \subseteq \mathbb{R}^4$ with framing ± 1 results in a manifold diffeomorphic to S^3 .
 - b) Prove more generally that surgery along the same unknot U with a framing of linking number $\pm p$ with U yields a lens space L(1,p).
- 4. Let $M \subseteq \mathbb{R}^{n+1}$ be a smooth closed submanifold. For each $v \in S^n \subseteq \mathbb{R}^{n+1}$ we define a function

$$f_v: M \to \mathbb{R}, \quad f_v(p) := \langle v, p \rangle,$$

where $\langle ., . \rangle$ is the standard Euclidean scalar product on \mathbb{R}^{n+1} . Prove that the set of $v \in Syl^n$ such that f_v is a Morse function is open and dense.

5. Suppose M is a smooth closed n-dimensional manifold which admits a smooth Morse function f: M → R with only two critical points. Prove that M is homeomorphic to Sⁿ. Remark: A remarkable theorem of Milnor says that such manifolds are not always diffeomorphic to Sⁿ. His original construction gave examples of this phenomenon in dimension 7.

6. Consider real projective space as the quotient $\mathbb{R}P^n = (\mathbb{R}^{n+1} \setminus \{0\})/\mathbb{R}_+$, where the multiplicative group \mathbb{R}_+ acts by scaling. Write $[x_0 : \ldots : x_n]$ for the point in $\mathbb{R}P^{n+1}$ represented by $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$. Now consider the function $f : \mathbb{R}P^n \to \mathbb{R}$,

$$f([x_0:\ldots:x_n]) := \frac{1}{\|x\|^2} \sum_{j=1}^n jx_j^2,$$

where $||x|| = \sqrt{\sum_j x_j^2}$ is the standard norm on \mathbb{R}^{n+1} .

- a) Prove that f is a Morse function, and determine its critical points (there are n+1 of them) as well as their Morse indices.
- b) Let $p: S^n \to \mathbb{R}P^n$, p(x) = [x] be the double cover of $\mathbb{R}P^n$ by S^n . Sketch the critical points and the qualitative behavious of the gradient flow with respect to the round metric on S^n of the lift $\tilde{f} = f \circ p: S^n \to \mathbb{R}$ of the function f for small values of n.
- 7. Let $f: M \to \mathbb{R}$ be a function and let X be the gradient vector field of f with respect to some Riemannian metrix g on M. Clearly zeroes of X correspond to critical points of f.
 - a) Prove that f is a Morse function if and only if X, viewed as a section of TM, is transverse to the zero section.
 - b) Prove that at a Morse critical point of f the index of X as a vector field and the Morse index of p as a critical point of f are related by

$$\operatorname{ind}_p(X) = (-1)^{\operatorname{ind}_f(p)}.$$