Differential Topology

Problem Set 2

Here is a second set of problems related to the material of the course up to this point. If you want to get feedback on your solution to a particular exercise, you may hand it in after any lecture, and I will try to comment within a week.

1. a) Let $f: M \rightarrow N$ and $g: N \rightarrow P$ be smooth maps between closed connected oriented manifolds of equal dimension. Prove that

$$
\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \cdot \operatorname{deg}(g)
$$

b) Prove that any smooth map between closed connected oriented manifolds which is a homotopy equivalence has degree ± 1.
2. What is the degree of
a) the map $f_{k}: S^{1} \rightarrow S^{1}$ given by $f(z)=z^{k}$ with $k \in \mathbb{Z}$? (Here we view $S^{1} \subseteq \mathbb{C}$ as the unit circle in \mathbb{C}.)
b) the map $S^{2} \rightarrow S^{2}$ defined by a rational function $f(z)=\frac{p(z)}{q(z)}$, where p and q are polynomials of degrees n and m without common roots?
Remark: To interpret f as a self-map of S^{2}, we identify $S^{2} \cong \mathbb{C} \cup\{\infty\}$.
3. Prove that every map $S^{d} \rightarrow S^{d}$ with degree different from $(-1)^{d+1}$ has a fixed point.
4. Prove that any map $S^{d} \rightarrow S^{d}$ of odd degree maps some pair of antipodal points onto a pair of antipodal points.
5. Prove that a manifold M is orientable if and only if the restriction of the tangent bundle to every closed curve in M is an orientable vector bundle.
6. Prove that for any vector bundle $p: E \rightarrow B$, the direct sum $E \oplus E \rightarrow B$ is orientable. Deduce as a consequence that the manifold $T M$ is orientable for any smooth manifold M.
7. Let $p: E \rightarrow B$ be a vector bundle over a connected base space B and let $F: E \rightarrow E$ be a bundle morphism covering the identity on B and satisfying $F \circ F=F$. Prove that F has constant rank, and deduce that $\operatorname{ker} F$ and $\operatorname{Im} F$ are subbundles of E.
8. In this exercise, we denote by $\underline{\mathbb{R}}^{k}$ the trivial bundle of rank k over the given base.
a) Prove that S^{n} admits a non-vanishing vector field if and only if n is odd.

Hint: Use such a vector field to construct a homotopy from the identity to the antipodal map.
b) Suppose M and N are manifolds of positive dimension such that $T M \oplus \underline{\mathbb{R}}^{1}$ and $T N \oplus \underline{\mathbb{R}}^{1}$ are trivial and assume that $T M$ has a nonvanishing section. Prove that $T(M \times N)$ is a trivial bundle.
c) Deduce that a product of two or more spheres has trivial tangent bundle if and only if at least one of them has odd dimension.
d) Illustrate your proof by giving an explicit trivialization of $T\left(S^{2} \times S^{5}\right)$. (If you find this too hard, try $T\left(S^{1} \times S^{2}\right)$ first.)
9. Let E_{i} be vector bundles over the same base B. A sequence of vector bundle morphisms, all covering the identity map on B,

$$
\ldots \xrightarrow{F_{i-2}} E_{i-1} \xrightarrow{F_{i-1}} E_{i} \xrightarrow{F_{i}} E_{i+1} \xrightarrow{F_{i+1}} \ldots
$$

is called exact, if for each $b \in B$ and each index i we have

$$
\operatorname{image}\left(F_{i-1}\right)_{b}=\operatorname{ker}\left(F_{i}\right)_{b}
$$

a) Prove that in every exact sequence of vector bundles all maps have constant rank over each connected component of B.

A short exact sequence is an exact sequence of the form

$$
0 \rightarrow E_{1} \xrightarrow{F_{1}} E_{2} \xrightarrow{F_{2}} E_{3} \rightarrow 0 .
$$

b) State explicitly which properties exactness of the sequence implies for each of the maps F_{1} and F_{2}.
c) Prove that in a short exact sequence as above, E_{2} is isomorphic to the direct sum $E_{1} \oplus E_{3}$.
10. Let $f: M \rightarrow M^{\prime}$ be a smooth map between manifolds transverse to the submanifold $Z^{\prime} \subset M^{\prime}$. We know that $Z:=f^{-1}\left(Z^{\prime}\right) \subset M$ is a smooth submanifold of the same codimension as Z^{\prime}. Prove that the normal bundle of Z in M is isomorphic to the pullback via f of the normal bundle of Z^{\prime} in M^{\prime}.
11. Let $f_{1}: M_{1} \rightarrow M^{\prime}$ and $f_{2}: M_{2} \rightarrow M^{\prime}$ be two smooth maps which are transverse in the sense that for every pair of points $\left.\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}\right)$ with $f_{1}\left(p_{1}\right)=f_{2}\left(p_{2}\right)=: q^{\prime}$ one has

$$
D f_{1}\left(T_{p_{1}} M_{1}\right)+D f_{2}\left(T_{p_{2}} M_{2}\right)=T_{q^{\prime}} M^{\prime}
$$

Prove that under these conditions the fiber product of M_{1} and M_{2} over M^{\prime},

$$
M_{1} \times_{M^{\prime}} M_{2}:=\left\{\left(p_{1}, p_{2}\right) \mid f_{1}\left(p_{1}\right)=f_{2}\left(p_{2}\right)\right\} \subseteq M_{1} \times M_{2}
$$

is a smooth submanifold. What is its dimension? Can you find interesting examples of this construction?
12. Prove that if M is oriented and S_{1} and S_{2} are oriented closed submanifolds of complementary dimension, then the intersection number satisfies

$$
S_{2} \bullet S_{1}=(-1)^{\operatorname{dim} S_{1} \cdot \operatorname{dim} S_{2}} S_{1} \bullet S_{2}
$$

Use the same argument that the Euler characteristic of an odd dimensional manifold vanishes.
13. Let M be a compact manifold and $f: M \rightarrow M$ a smooth map. The Lefschetz number $L(f)$ of f is defined to be the intersection number (defined in \mathbb{Z} if M is oriented or in \mathbb{Z}_{2} otherwise)

$$
L(f):=\Delta \bullet \operatorname{graph} f
$$

of the diagonal $\Delta \subset M \times M$ and graph $f=\{(x, f(x)) \in M \times M \mid x \in M\}$.
a) Prove that if $L(f)$ is not zero, then f has a fixed point.
b) If f and g are homotopic maps, then $L(f)=L(g)$.
c) If f is homotopic to the identity, then $L(f)=\chi(M)$.
d) Show that graph $f \pitchfork \Delta$ if and only if at every fixed point $x \in M$ for f the differential $f_{*, x}: T_{x} M \rightarrow T_{x} M$ does not have 1 as an eigenvalue.
e) Prove that in this case the contribution of the fixed point $x \in M$ of f to the Lefschetz number $L(f)$ is $\operatorname{sgn} \operatorname{det}\left(f_{*, x}-\mathbb{1}\right)$, where $\mathbb{1}: T_{x} M \rightarrow T_{x} M$ is the identity map.

