Summer 2019

Universität Hamburg Janko Latschev

DIFFERENTIAL TOPOLOGY

Problem Set 2

Here is a second set of problems related to the material of the course up to this point. If you want to get feedback on your solution to a particular exercise, you may hand it in after any lecture, and I will try to comment within a week.

1. a) Let $f: M \to N$ and $g: N \to P$ be smooth maps between closed connected oriented manifolds of equal dimension. Prove that

$$\deg(f \circ g) = \deg(f) \cdot \deg(g).$$

- b) Prove that any smooth map between closed connected oriented manifolds which is a homotopy equivalence has degree ± 1 .
- **2.** What is the degree of
 - a) the map $f_k : S^1 \to S^1$ given by $f(z) = z^k$ with $k \in \mathbb{Z}$? (Here we view $S^1 \subseteq \mathbb{C}$ as the unit circle in \mathbb{C} .)
 - **b)** the map $S^2 \to S^2$ defined by a rational function $f(z) = \frac{p(z)}{q(z)}$, where p and q are polynomials of degrees n and m without common roots? Remark: To interpret f as a self-map of S^2 , we identify $S^2 \cong \mathbb{C} \cup \{\infty\}$.
- **3.** Prove that every map $S^d \to S^d$ with degree different from $(-1)^{d+1}$ has a fixed point.
- 4. Prove that any map $S^d \to S^d$ of odd degree maps some pair of antipodal points onto a pair of antipodal points.
- 5. Prove that a manifold M is orientable if and only if the restriction of the tangent bundle to every closed curve in M is an orientable vector bundle.
- 6. Prove that for any vector bundle $p: E \to B$, the direct sum $E \oplus E \to B$ is orientable. Deduce as a consequence that the manifold TM is orientable for any smooth manifold M.
- 7. Let $p: E \to B$ be a vector bundle over a connected base space B and let $F: E \to E$ be a bundle morphism covering the identity on B and satisfying $F \circ F = F$. Prove that F has constant rank, and deduce that ker F and Im F are subbundles of E.
- 8. In this exercise, we denote by $\underline{\mathbb{R}}^k$ the trivial bundle of rank k over the given base.

- a) Prove that Sⁿ admits a non-vanishing vector field if and only if n is odd.
 Hint: Use such a vector field to construct a homotopy from the identity to the antipodal map.
- **b)** Suppose M and N are manifolds of positive dimension such that $TM \oplus \mathbb{R}^1$ and $TN \oplus \mathbb{R}^1$ are trivial and assume that TM has a nonvanishing section. Prove that $T(M \times N)$ is a trivial bundle.
- c) Deduce that a product of two or more spheres has trivial tangent bundle if and only if at least one of them has odd dimension.
- d) Illustrate your proof by giving an explicit trivialization of $T(S^2 \times S^5)$. (If you find this too hard, try $T(S^1 \times S^2)$ first.)
- **9.** Let E_i be vector bundles over the same base B. A sequence of vector bundle morphisms, all covering the identity map on B,

$$\dots \xrightarrow{F_{i-2}} E_{i-1} \xrightarrow{F_{i-1}} E_i \xrightarrow{F_i} E_{i+1} \xrightarrow{F_{i+1}} \dots$$

is called exact, if for each $b \in B$ and each index i we have

$$\operatorname{image}(F_{i-1})_b = \ker(F_i)_b.$$

a) Prove that in every exact sequence of vector bundles all maps have constant rank over each connected component of B.

A short exact sequence is an exact sequence of the form

$$0 \to E_1 \xrightarrow{F_1} E_2 \xrightarrow{F_2} E_3 \to 0.$$

- b) State explicitly which properties exactness of the sequence implies for each of the maps F_1 and F_2 .
- c) Prove that in a short exact sequence as above, E_2 is isomorphic to the direct sum $E_1 \oplus E_3$.
- **10.** Let $f: M \to M'$ be a smooth map between manifolds transverse to the submanifold $Z' \subset M'$. We know that $Z := f^{-1}(Z') \subset M$ is a smooth submanifold of the same codimension as Z'. Prove that the normal bundle of Z in M is isomorphic to the pullback via f of the normal bundle of Z' in M'.
- 11. Let $f_1: M_1 \to M'$ and $f_2: M_2 \to M'$ be two smooth maps which are *transverse* in the sense that for every pair of points $(p_1, p_2) \in M_1 \times M_2$ with $f_1(p_1) = f_2(p_2) =: q'$ one has

$$Df_1(T_{p_1}M_1) + Df_2(T_{p_2}M_2) = T_{q'}M'.$$

Prove that under these conditions the fiber product of M_1 and M_2 over M',

$$M_1 \times_{M'} M_2 := \{(p_1, p_2) \mid f_1(p_1) = f_2(p_2)\} \subseteq M_1 \times M_2,$$

is a smooth submanifold. What is its dimension? Can you find interesting examples of this construction?

12. Prove that if M is oriented and S_1 and S_2 are oriented closed submanifolds of complementary dimension, then the intersection number satisfies

$$S_2 \bullet S_1 = (-1)^{\dim S_1 \cdot \dim S_2} S_1 \bullet S_2.$$

Use the same argument that the Euler characteristic of an odd dimensional manifold vanishes.

13. Let *M* be a compact manifold and $f: M \to M$ a smooth map. The Lefschetz number L(f) of f is defined to be the intersection number (defined in \mathbb{Z} if *M* is oriented or in \mathbb{Z}_2 otherwise)

$$L(f) := \Delta \bullet \operatorname{graph} f$$

of the diagonal $\Delta \subset M \times M$ and graph $f = \{(x, f(x)) \in M \times M \mid x \in M\}$.

- a) Prove that if L(f) is not zero, then f has a fixed point.
- **b)** If f and g are homotopic maps, then L(f) = L(g).
- c) If f is homotopic to the identity, then $L(f) = \chi(M)$.
- d) Show that graph $f \pitchfork \Delta$ if and only if at every fixed point $x \in M$ for f the differential $f_{*,x}: T_x M \to T_x M$ does not have 1 as an eigenvalue.
- e) Prove that in this case the contribution of the fixed point $x \in M$ of f to the Lefschetz number L(f) is sgn det $(f_{*,x} 1)$, where $1: T_x M \to T_x M$ is the identity map.