DIFFERENTIALGEOMETRIE

Übungsaufgaben 4

Präsenzaufgaben

- (**P9**) Es sei M eine n-dimensionale glatte Mannigfaltigkeit und (φ, U) eine Karte mit den lokalen Koordinaten $\varphi = (x_1, \dots, x_n)$. Zeigen Sie:
 - a) Es gilt $\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] = 0$ für alle $i, j \in \{1, \dots, n\}$.
 - **b)** Für $X, Y \in \Gamma(TM)$ und $f, g \in C^{\infty}(M)$ gilt allgemein

$$[fX, gY] = fg[X, Y] + fX(g)Y - gY(f)X.$$

c) Für glatte lokale Vektorfelder $X = \sum_{i=1}^{n} X_i \frac{\partial}{\partial x_i}$ und $Y = \sum_{i=1}^{n} Y_i \frac{\partial}{\partial x_i}$ auf U gilt die Formel

$$[X,Y] = \sum_{i,j=1}^{n} \left(X_i \frac{\partial Y_j}{\partial x_i} - Y_i \frac{\partial X_j}{\partial x_i} \right) \frac{\partial}{\partial x_j}.$$

d) Berechnen Sie die Lieklammer der Vektorfelder

$$X := x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
 und $Y := -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$.

auf \mathbb{R}^2 . Können Sie die Antwort auch ohne Rechnung erklären?

(P10) Finden Sie den Definitionsbereich $\mathcal{D}_X \subset M \times \mathbb{R}$ des Flusses des Vektorfeldes $X_x = x^2 \frac{\partial}{\partial x}$ auf $M = \mathbb{R}!$

Übungsaufgaben mit Abgabetermin Do, 4.5., in der Vorlesung

(A11) Sei $F: M \to N$ eine glatte Abbildung zwischen glatten Mannigfaltigkeiten. Zeigen Sie: Gilt für Vektorfelder $X_i \in \Gamma(TM)$ und $\overline{X_i} \in \Gamma(TN)$ $(i \in \{1,2\})$ in jedem Punkt $p \in M$ die Beziehung

$$(\overline{X_i})_{F(p)} = F_* X_p,$$

so folgt auch

$$[\overline{X_1}, \overline{X_2}]_{F(p)} = F_*[X_1, X_2]_p$$
 für alle $p \in M$.

(A12) Seien X und Y Vektorfelder auf M, und seien φ_t bzw. ψ_t die jeweiligen (lokalen) Flüsse. Für $p \in M$ gibt es ein offenes Intervall $I \subset \mathbb{R}$ mit $0 \in I$, so dass durch $c_p(t) := \psi_{-t} \circ \varphi_{-t} \circ \psi_t \circ \varphi_t(p)$ eine Kurve $c_p : I \to \mathbb{R}^n$ definiert wird. Zeigen Sie $\dot{c}_p(0) = 0$ und

$$\frac{1}{2}\ddot{c}_p(0) = [X, Y]_p.$$

Hinweis: Betrachten Sie zunächst die Abbildung $\beta: (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \to M$, gegeben als $\beta(s, t) = \psi_{-s} \circ \varphi_{-t} \circ \psi_s \circ \varphi_t(p)$, und drücken Sie die Ableitungen von c durch geeignete Ableitungen von β aus!

- (A13) Sei M eine glatte Mannigfaltigkeit, und sei E ein Vektorbündel vom Rang k über M.
 - a) Beschreiben Sie die Konstruktion des Bündels $\pi: \Lambda^k E^* \to M$ mit $\pi^{-1}(p) = \Lambda^k(E_p^*)$, der Raum der alternierenden k-Formen auf E_p , indem Sie aus den Übergangsfunktionen $\varphi_{\alpha\beta}$ von E die Übergangsfunktionen $\psi_{\alpha\beta}$ für $\Lambda^k E^*$ gewinnen.
 - b) Beweisen Sie, dass E genau dann orientierbar ist, wenn das Bündel $\Lambda^k E^*$ trivial ist. Kommt Ihnen diese Aussage bekannt vor?
- (A14) Finden Sie vollständige Vektorfelder X und Y auf \mathbb{R}^2 , so dass X + Y nicht vollständig ist!