Real-analytic weak mixing diffeomorphisms preserving a measurable Riemannian metric

PHILIPP KUNDE

Abstract

On the torus \mathbb{T}^m of dimension $m \geq 2$ we prove the existence of a real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric. The proof is based on a real-analytic version of the approximation by conjugation-method with explicitly defined conjugation maps and partition elements.

1 Introduction

Until 1970 it was an open question if there exists an ergodic area-preserving smooth diffeomorphism on the disc D^2. This problem was solved by the so-called “approximation by conjugation”-method developed by D. Anosov and A. Katok in [AK70]. In fact, on every smooth compact connected manifold M of dimension $m \geq 2$ admitting a non-trivial circle action $R = \{R_t\}_{t \in S^1}$ preserving a smooth volume μ this method enables the construction of smooth diffeomorphisms with specific ergodic properties (e.g. weak mixing ones in [AK70], section 5) or non-standard smooth realizations of measure-preserving systems (e.g. [AK70], section 6, [BE13] and [FSW07]). See also [FK04] for more details and other results of this method. These diffeomorphisms are constructed as limits of conjugates $f_n = H_n \circ R_{\alpha_n+1} \circ H_n^{-1}$, where $\alpha_n+1 = \frac{1}{\sum_{k=1}^{n} l_k^n} \in \mathbb{Q}$, $H_n = H_{n-1} \circ h_n$ and h_n is a measure-preserving diffeomorphism satisfying $R_1 \circ h_n = h_n \circ R_1$. In each step the conjugation map h_n and the parameter l_n are chosen such that the diffeomorphism f_n imitates the desired property with a certain precision. Then the parameter k_n is chosen large enough to guarantee closeness of f_n to f_{n-1} in the C^∞-topology and so the convergence of the sequence $(f_n)_{n \in \mathbb{N}}$ to a limit diffeomorphism is provided. It is even possible to keep this limit diffeomorphism within any given C^∞-neighbourhood of the initial element S_{α_1} or, by applying a fixed diffeomorphism g first, of $g \circ S_{\alpha_1} \circ g^{-1}$. So the construction can be carried out in a neighbourhood of any diffeomorphism conjugate to an element of the action. Thus, $A(M) = \{ h \circ R_t \circ h^{-1} : t \in S^1, h \in \text{Diff}^\infty(M, \mu) \}$ is a natural space for the produced diffeomorphisms.

In their influential paper [AK70] Anosov and Katok proved amongst others that in $A(M)$ the set of weak mixing diffeomorphisms is generic (i.e. it is a dense G_δ-set) in the $C^\infty(M)$-topology. For it they used the “approximation by conjugation”-method. In [GKa00] the conjugation maps are constructed more explicitly such that they can be equipped with the additional structure of being locally very close to an isometry. Hereby, it is shown that there exists a weak mixing smooth diffeomorphism preserving a smooth measure and a measurable Riemannian metric. Actually, it follows from the respective proofs that both results are true in the restricted space $A_\alpha(M) = \{ h \circ R_\alpha \circ h^{-1} : h \in \text{Diff}^\infty(M, \mu) \}$ for a G_δ-set of $\alpha \in S^1$. However, both proofs do not give a full description of the set of $\alpha \in S^1$ for which the particular result holds in $A_\alpha(M)$. Such a result is the content of [GKu15]: If $\alpha \in \mathbb{R}$ is Liouville, the set of volume-preserving
diffeomorphisms, that are weak mixing and preserve a measurable Riemannian metric, is dense in the C^∞-topology in $A_\alpha(M)$.

While the “approximation by conjugation”-method is one of the most powerful tools of constructing smooth diffeomorphisms with prescribed ergodic or topological properties, there are great challenging differences in the real-analytic case as discussed in [FK04], §7.1: Since maps with very large derivatives in the real domain or its inverses are expected to have singularities in a small complex neighbourhood, for a real analytic family S_t, $0 \leq t \leq t_0$, $S_0 = \text{id}$, the family $h \circ S_t \circ h^{-1}$ is expected to have singularities very close to the real domain for any $t > 0$. So, the domain of analycity for maps of our form $f_n = H_n \circ R_{\alpha_n+1} \circ H_n^{-1}$ will shrink at any step of the construction and the limit diffeomorphism will not be analytic. Thus, it is necessary to find conjugation maps of a special form which may be inverted more or less explicitly in such a way that one can guarantee analycity of the map and its inverse in a large complex domain.

Using very explicit conjugation maps M. Saprykina was able to construct examples of volume-preserving uniquely ergodic real-analytic diffeomorphims on \mathbb{T}^2 ([Sa03]). Fayad and Katok designed such examples on any odd-dimensional sphere in [FK14]. By a similar approach as Saprykina we can prove the existence of weak mixing real-analytic diffeomorphisms on \mathbb{T}^2 that are uniformly rigid with respect to a prescribed sequence satisfying a growth condition ([Ku15]). Recently, S. Banerjee constructed non-standard real-analytic realizations on \mathbb{T}^2 of some irrational circle rotations ([Ba15]). His key idea is to use entire functions that approximate certain carefully chosen step functions, which is the important mechanism in our constructions in this paper as well. We will prove the following main theorem:

Theorem. Let $\rho > 0$, $m \geq 2$ and \mathbb{T}^m be the torus with Lebesgue measure μ. There exists a weak mixing real-analytic diffeomorphism $f \in \text{Diff}_\rho(\mathbb{T}^m, \mu)$ preserving a measurable Riemannian metric.

Hereby, we solve [GKa00], Problem 3.9., about the existence of real-analytic volume-preserving IM-diffeomorphisms (i.e. diffeomorphisms preserving an absolutely continuous probability measure and a measurable Riemannian metric) in the case of tori \mathbb{T}^m, $m \geq 2$. See [GKa00], section 3, for a comprehensive consideration of IM-diffeomorphisms and IM-group actions. In particular, the existence of a measurable invariant metric for a diffeomorphism is equivalent to the existence of an invariant measure for the projectivized derivative extension which is absolutely continuous in the fibers. In [K1] the ergodic behaviour of the derivative extension with respect to such a measure is examined. It provides the only known examples of measure-preserving diffeomorphisms whose differential is ergodic with respect to a smooth measure in the projectivization of the tangent bundle.

2 Preliminaries

2.1 Analytic topology

Real-analytic diffeomorphisms of \mathbb{T}^m homotopic to the identity have a lift of type

$$F(x_1, ..., x_m) = (x_1 + f_1(x_1, ..., x_m), ..., x_m + f_m(x_1, ..., x_m)),$$

where the functions $f_i : \mathbb{R}^m \to \mathbb{R}$ are real-analytic and \mathbb{Z}^m-periodic for $i = 1, ..., m$. For these functions we introduce the subsequent definition:

Definition 2.1. For any $\rho > 0$ we consider the set of real-analytic \mathbb{Z}^m-periodic functions on \mathbb{R}^m, that can be extended to a holomorphic function on $A^\rho := \{(z_1, ..., z_m) \in \mathbb{C}^m : |\text{im}(z_i)| < \rho \text{ for } i = 1, ..., m\}$.

1. For these functions let \(\|f\|_\rho := \sup_{(z_1, ..., z_m) \in A^\rho} |f(z_1, ..., z_m)| \).

2. The set of these functions satisfying the condition \(\|f\|_\rho < \infty \) is denoted by \(C^\omega_\rho(T^m) \).

Furthermore, we consider the space \(\text{Diff}^\omega_\rho(T^m, \mu) \) of those volume-preserving diffeomorphisms homotopic to the identity, for whose lift we have \(f_i \in C^\omega_\rho(T^m) \) for \(i = 1, ..., m \).

Definition 2.2. For \(f, g \in \text{Diff}^\omega_\rho(T^m, \mu) \) we define
\[
\|f\|_\rho = \max_{i=1, ..., m} \|f_i\|_\rho
\]
and the distance
\[
d_\rho(f, g) = \max_{i=1, ..., m} \left\{ \inf_{p \in \mathbb{R}} \|f_i - g_i - p\|_\rho \right\}.
\]

Remark 2.3. \(\text{Diff}^\omega_\rho(T^m, \mu) \) is a Banach space (see [Sa03] for a more extensive treatment of these spaces).

Moreover, for a diffeomorphism \(T \) with lift \(\tilde{T}(x_1, ..., x_m) = (T_1(x_1, ..., x_m), ..., T_m(x_1, ..., x_m)) \) we define
\[
\|DT\|_\rho = \max \left\{ \left\| \frac{\partial T_i}{\partial x_j} \right\|_\rho \text{ for } i, j = 1, ..., m \right\}
\]

2.2 Outline of the proof

We consider the torus \(T^m \) equipped with Lebesgue measure \(\mu \) and the circle action \(\mathcal{R} = \{ R_t \}_{t \in \mathbb{S}^1} \) comprising of the diffeomorphisms \(R_t(x_1, ..., x_m) = (x_1 + t, x_2, ..., x_m) \). According to the “approximation by conjugation-method” the aimed weak mixing diffeomorphism \(f \) preserving a measurable invariant Riemannian metric is constructed as the limit of volume-preserving real-analytic diffeomorphisms \(f_n \) defined by \(f_n = H_n \circ R_{\alpha_n+1} \circ H_n^{-1} \). Here, the rational numbers \(\alpha_{n+1} \in \mathbb{S}^1 \) and the conjugation maps \(H_n \in \text{Diff}^\omega(T^m, \mu) \) are constructed inductively:

\[
\alpha_{n+1} = \frac{p_{n+1}}{q_{n+1}} = \alpha_n + \frac{1}{k_n \cdot l_n \cdot q_n} \quad \text{and} \quad H_n = h_1 \circ ... \circ h_n,
\]

where the conjugation map \(h_n \in \text{Diff}^\omega(T^m, \mu) \) has to satisfy \(h_n \circ R_{\alpha_n} = R_{\alpha_n} \circ h_n \) and \(k_n, l_n \in \mathbb{N} \) are parameters that have to be chosen appropriately.

In our constructions, \(h_n = g_n \circ \phi_n \) is the composition of two real-analytic diffeomorphisms, which are defined explicitly in subsection 3.3 and 3.4 respectively. Moreover, we define two types of partial partitions \(\eta \) and \(\zeta \) in subsection 3.2. The elements of \(\eta \) have to be \((\gamma, \varepsilon) \)-distributed under the map \(\Phi_n := \phi_n \circ R_{\alpha_n} \circ \phi_n^{-1} \), where the numbers \(m_n \in \mathbb{N} \) are defined in subsection 3.1. This concept of \((\gamma, \varepsilon) \)-distribution is introduced in section 3.1. Descriptively, it says that the partition elements, which are contained in a cuboid of small edge length \(\frac{1}{m_n} \), are mapped in a almost uniformly distributed way onto a set of almost full volume in the \(x_2, ..., x_m \)-coordinates and \(x_1 \)-width smaller than \(\gamma \). This property is the central notion in the criterion for weak mixing deduced in section 5. At this juncture, the map \(g_n \) is required to introduce some kind of shear into the \(x_1 \)-coordinate. On the other hand, \(h_n \) has to act as an “almost isometry” on the elements of the partial partition \(\zeta \), in order to enable us to construct the invariant measurable Riemannian metric.

Definition 2.4. For a diffeomorphism \(f \) defined on a compact subset \(U \) of a smooth Riemannian manifold we define the deviation from being an isometry by
\[
\text{dev}_{U}(f) := \max_{v \in TU, \|v\| = 1} \log ||df(v)||
\]
Explicit constructions

Remark 2.5. We observe that this quantity has the following properties:

- $\text{dev}_U(f) = 0$ if and only if f is a smooth isometry of U.
- $\text{dev}_U(f) = \text{dev}_{f(U)}(f^{-1})$
- $\text{dev}_U(f \circ f) \leq \text{dev}_{f(U)}(f) + \text{dev}_U(f)$

Hereby, the invariant measurable Riemannian metric is constructed by the same approach as in [GK00]. Finally, by choosing k_n large enough we can prove the convergence of the sequence $(f_n)_{n \in \mathbb{N}}$ in $\text{Diff}_\omega^\rho(T^m, \mu)$ in section 6.

3 Explicit constructions

We present step n in our inductive process of construction. Hence, we assume that we have already defined $H_{n-1} = h_1 \circ \ldots \circ h_{n-1}$ and the rational numbers $\alpha_1, \ldots, \alpha_n \in \mathbb{S}^1$. Let l_n be a large enough even integer satisfying condition \(A\) and

\[
l_n > m \cdot n^2 \cdot q_n \cdot \|DH_{n-1}\|_0.
\]

We will use this parameter to ensure that the sequence of partial partitions under consideration converge to the decomposition into points (see the proof of Lemma 5.3) and that the constructed form ω_∞ is positive definite (see Lemma 7.3). In this connection, the parameters

\[
d_n = \frac{1}{10 \cdot n^2 \cdot q_n \cdot l_n^{m+1}}
\]

and

\[
e_n = \frac{1}{400 \cdot m \cdot n^4 \cdot q_n^2 \cdot l_n^{2m+2}}
\]

are important as well.

3.1 Choice of the mixing sequence $(m_n)_{n \in \mathbb{N}}$

By condition 13 our chosen sequence $(q_n)_{n \in \mathbb{N}}$ satisfies

\[
q_{n+1} = k_n \cdot l_n \cdot q_n > 40n^2 \cdot q_n \cdot l_n^{m+1}.
\]

Define

\[
m_n = \min \left\{ m \leq q_n+1 : m \in \mathbb{N}, \inf_{k \in \mathbb{Z}} \left| m \cdot \frac{p_{n+1}}{q_{n+1}} - \frac{1}{2} \cdot \frac{k}{q_n} \right| \leq \frac{1}{q_{n+1}} \right\}
\]

and

\[
m_n = \min \left\{ m \leq q_n+1 : m \in \mathbb{N}, \inf_{k \in \mathbb{Z}} \left| m \cdot \frac{q_n \cdot p_{n+1}}{q_{n+1}} - \frac{1}{2} + k \right| \leq \frac{q_n}{q_{n+1}} \right\}
\]

Lemma 3.1. The set \(\left\{ m \leq q_n+1 : m \in \mathbb{N}, \inf_{k \in \mathbb{Z}} \left| m \cdot \frac{q_n \cdot p_{n+1}}{q_{n+1}} - \frac{1}{2} + k \right| \leq \frac{q_n}{q_{n+1}} \right\} \) is nonempty for every $n \in \mathbb{N}$, i.e. m_n exists.
Proof. We construct the sequence $\alpha_n = \frac{p_n}{q_n}$ in such a way, that $\alpha_{n+1} = \alpha_n + \frac{1}{l_n q_n}$. In particular, p_{n+1} and q_{n+1} are relatively prime. Therefore, the set \(\left\{ j \cdot \frac{q_n p_{n+1}}{q_{n+1}} : j = 1, \ldots, q_n \right\} \) contains \(\frac{q_{n+1}}{\gcd(q_n, q_{n+1})} \) different equally distributed points on S^1. Hence, there are at least q_{n+1} different such points and so for every $x \in S^1$ there is a $j \in \{1, \ldots, q_{n+1}\}$ such that

$$\inf_{k \in \mathbb{Z}} \left| x - j \cdot \frac{q_n p_{n+1}}{q_{n+1}} + k \right| \leq \frac{q_n}{q_{n+1}}.$$

In particular, this is true for $x = \frac{1}{2}$.

Remark 3.2. We define

$$a_n = \left(m_n \cdot \frac{p_{n+1}}{q_{n+1}} - \frac{1}{2} \cdot \frac{1}{q_n} \right) \mod \frac{1}{q_n}$$

By the above construction of m_n it holds that $|a_n| \leq \frac{1}{q_{n+1}}$. By equation 4 we get:

$$|a_n| \leq \frac{1}{40n^2 \cdot q_n \cdot l_{m+1}} = \frac{\delta_n}{4}.$$

3.2 Sequences of partial partitions

In this subsection we define the two announced sequences of partial partitions $(\eta_n)_{n \in \mathbb{N}}$ and $(\zeta_n)_{n \in \mathbb{N}}$ of T^m.

3.2.1 Partial partition η_n

Remark 3.3. For convenience we will use the notation $\prod_{i=2}^{m} [a_i, b_i]$ for $[a_2, b_2] \times \ldots \times [a_m, b_m]$.

Initially, η_n will be constructed on the fundamental sector $[0, \frac{1}{q_n}] \times T^{m-1}$. With a view to the piecewise definition of the conjugation map ϕ_n in the following subsection we divide the fundamental sector in two sections:

- On $[0, \frac{1}{2q_n}] \times T^{m-1}$ we consider the following sets:

$$I_{j_1, \ldots, j_m} := \bigcup \left[\frac{j_1}{2q_n \cdot l_n} + \frac{t(1)}{2q_n l_n^2} + \ldots + \frac{t(m-1)}{2q_n l_m} + \delta_n, \frac{j_1}{2q_n \cdot l_n} + \frac{t(1)}{2q_n l_n^2} + \ldots + \frac{t(m-1)}{2q_n l_m} + \frac{1}{2q_n l_m} - \delta_n \right] \times \prod_{i=2}^{m} \left[\frac{j_i}{l_n} + \delta_n, \frac{j_i}{l_n} + 1 - \delta_n \right],$$

where the union is taken over $t(s) \in \mathbb{Z}$, $0 \leq t(s) \leq l_n - 1$, for $s = 1, \ldots, m - 1$.

The partial partition η_n consists of all such sets $I_{j_1, \ldots, j_{m-1}}$, at which $j_i \in \mathbb{Z}$, $1 \leq j_1 \leq l_n - 3$ and $1 \leq j_i \leq l_n - 2$ for $i = 2, \ldots, m$.
On \(\left[\frac{1}{2q_n}, \frac{1}{q_n} \right] \times T^{m-1} \) we consider sets of the following form:

\[
I_{j_1, \ldots, j_m} := \bigcup \left[\frac{j_1}{2q_n \cdot l_n} + \frac{j_1^{(1)}}{2q_n \cdot l_n^1} + \ldots + \frac{j_1^{(m)}}{2q_n \cdot l_n^m} + \frac{1}{2q_n \cdot l_n} + \delta_n, \frac{j_1}{2q_n \cdot l_n} + \frac{j_1^{(2)}}{2q_n \cdot l_n^2} + \ldots + \frac{j_1^{(m-1)}}{2q_n \cdot l_n^m} + \frac{1}{2q_n \cdot l_n} - \delta_n \right]
\]

\[
\times \prod_{i=2}^{m} \left[j_i \frac{1}{l_n} + \frac{j_i^{(1)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \frac{\delta_n}{10n^2 \cdot q_n \cdot l_n^{m+1}}, j_i \frac{1}{l_n} + \frac{j_i^{(2)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \ldots + \frac{j_i^{(m-1)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \frac{1}{10n^2 \cdot q_n \cdot l_n^{m+1}} \right],
\]

where the union is taken over \(t(s) \in \mathbb{Z}, 0 \leq t(s) \leq l_n - 1 \), for \(s = 1, \ldots, m - 1 \).

The partial partition \(\eta_n \) consists of all such sets \(I_{j_1, \ldots, j_m-1} \), at which \(j_i \in \mathbb{Z}, 1 \leq j_i \leq l_n - 3 \) and \(1 \leq j_i \leq l_n - 2 \) for \(i = 2, \ldots, m \).

As the image under \(R_{l/q_n} \) with \(l \in \mathbb{Z} \) this partial partition of \(\left[0, \frac{1}{q_n} \right] \times T^{m-1} \) is extended to a partial partition of \(T^m \).

Remark 3.4. By construction this sequence of partial partitions converges to the decomposition into points.

3.2.2 Partial partition \(\zeta_n \)

On the fundamental sector \(\left[0, \frac{1}{q_n} \right] \times T^{m-1} \) the partial partition \(\zeta_n \) consists of all multidimensional intervals of the following form:

\[
\left[j_1^{(1)} \frac{1}{2q_n \cdot l_n} + \frac{j_1^{(2)}}{2q_n \cdot l_n^2} + \ldots + j_1^{(m)} \frac{1}{2q_n \cdot l_n^m} + \delta_n, j_1^{(1)} \frac{1}{2q_n \cdot l_n} + \frac{j_1^{(2)}}{2q_n \cdot l_n^2} + \ldots + j_1^{(m-1)} \frac{1}{2q_n \cdot l_n^m} + \delta_n \right]
\]

\[
\times \prod_{i=2}^{m} \left[j_i^{(1)} \frac{1}{l_n} + \frac{j_i^{(2)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \frac{\delta_n}{10n^2 \cdot q_n \cdot l_n^{m+1}}, j_i^{(1)} \frac{1}{l_n} + \frac{j_i^{(2)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \ldots + \frac{j_i^{(m-1)}}{10n^2 \cdot q_n \cdot l_n^{m+1}} + \frac{1}{10n^2 \cdot q_n \cdot l_n^{m+1}} \right],
\]

where \(j_i^{(1)} \in \mathbb{Z}, 0 \leq j_i^{(1)} \leq 2l_n - 1 \), and \(j_i^{(s)} \in \mathbb{Z}, 1 \leq j_i^{(s)} \leq l_n - 2 \), for \(s = 2, \ldots, m \) as well as for \(i = 2, \ldots, m: j_i^{(1)} \in \mathbb{Z}, 1 \leq j_i^{(1)} \leq l_n - 2 \), and \(j_i^{(2)} \in \mathbb{Z}, 1 \leq j_i^{(2)} \leq 10n^2 \cdot q_n \cdot l_n^{m+1} - 2 \).

As above we extend it to a partial partition of \(T^m \) as the image under \(R_{l/q_n} \) with \(l \in \mathbb{Z} \).

Remark 3.5. For every \(n \geq 3 \) the partial partition \(\zeta_n \) consists of disjoint sets, covers a set of measure at least \(1 - \frac{1}{n^2} \) and the sequence \((\zeta_n)_{n \in \mathbb{N}} \) converges to the decomposition into points.

3.3 The conjugation map \(\phi_n \)

First of all, we consider the following step functions for \(d = 2, \ldots, m \):

\[
\psi_{1,n}^{(d)} : [0, 1) \to \mathbb{R}
\]

defined by \(\psi_{1,n}^{(d)}(x) = \sum_{i=1}^{l_n-1} \frac{l_n - i}{2q_n \cdot l_n^d} \cdot \chi_\left(\left[\frac{\frac{i}{l_n} + \frac{1}{n}, \frac{i+1}{l_n} \right) \right] (x) \)

\[
\psi_{3,n}^{(d)} : [0, 1) \to \mathbb{R}
\]

defined by \(\psi_{3,n}^{(d)}(x) = \sum_{i=1}^{l_n-1} \frac{i}{2q_n \cdot l_n^d} \cdot \chi_\left(\left[\frac{\frac{i}{l_n} + \frac{1}{n}, \frac{i+1}{l_n} \right) \right] (x) \)

Explicit constructions 6
Furthermore, we require another type of step function: For $i \in \mathbb{Z}$, $0 \leq i \leq l_n^d - 1$, we put $\beta_i^{(2)} := \frac{l_n}{t_n}$ if $i \equiv j \mod l_n$. For $i \in \mathbb{Z}$, $l_n^d - 1 \leq i \leq 2l_n^d - 1$, we put $\beta_i^{(2)} := 0$. Then we consider

$$\tilde{\phi}_{2,n}^{(d)} : [0, \frac{1}{q_n}) \to \mathbb{R}$$

defined by $\tilde{\phi}_{2,n}^{(d)}(x) = \sum_{i=0}^{2l_n^d-1} \beta_i^{(2)} \left(\chi_{\left(\frac{i}{2l_n^d}, \frac{i+1}{2l_n^d}\right)}(x) \right)$

and extend it to a map on $[0, 1)$ periodically.

Hereby, we define

$$\phi_{1,n}^{(d)} : \mathbb{T}^m \to \mathbb{T}^m,$$

$$\phi_{1,n}^{(d)}(x_1, \ldots, x_m) = (x_1 + \tilde{\phi}_{1,n}^{(d)}(x_d) \mod 1, x_2, \ldots, x_m)$$

$$\phi_{2,n}^{(d)} : \mathbb{T}^m \to \mathbb{T}^m,$$

$$\phi_{2,n}^{(d)}(x_1, \ldots, x_m) = (x_1, \ldots, x_d-1, x_d + \tilde{\phi}_{2,n}^{(d)}(x_1) \mod 1, x_{d+1}, \ldots, x_m)$$

$$\phi_{3,n}^{(d)} : \mathbb{T}^m \to \mathbb{T}^m,$$

$$\phi_{3,n}^{(d)}(x_1, \ldots, x_m) = (x_1 - \tilde{\phi}_{3,n}^{(d)}(x_d) \mod 1, x_2, \ldots, x_m)$$

and $\phi_n^{(d)} := \phi_{3,n}^{(d)} \circ \phi_{2,n}^{(d)} \circ \phi_{1,n}^{(d)}$. Moreover, let $\tilde{\phi}_n = \phi_n^{(2)} \circ \ldots \circ \phi_n^{(m)}$. These maps will help us to understand the combinatorics in the proof (see the proof of Lemma 4.3). Unfortunately, they are discontinuous. In order to construct entire conjugation maps we will use the subsequent Lemma about approximation of step functions by real-analytic diffeomorphisms inspired by [Ba15], Lemma 4.1, where we call an entire function real if it maps the real line into itself:

Lemma 3.6. Let $l, N \in \mathbb{N}$, l even and $\beta = (\beta_0, \ldots, \beta_{l-1}) \in [0, 1]^l$. We consider a step function of the form

$$\tilde{s}_{\beta,N} : [0, 1) \to \mathbb{R}$$

defined by $\tilde{s}_{\beta,N}(x) = \sum_{i=0}^{lN-1} \tilde{\beta}_i \cdot \chi_{(\frac{i}{lN}, \frac{i+1}{lN})}(x)$,

where $\tilde{\beta}_i := \beta_j$ in case of $j \equiv i \mod l$. Then, given any $\varepsilon > 0$ and $\delta > 0$, there exists a $\frac{1}{N}$-periodic real entire function $s_{\beta,N,\varepsilon,\delta}$ satisfying

$$\sup_{x \in [0,1) \setminus F} |s_{\beta,N,\varepsilon,\delta}(x) - \tilde{s}_{\beta,N}(x)| < \varepsilon \quad \text{and} \quad \sup_{x \in [0,1) \setminus F} |s_{\beta,N,\varepsilon,\delta}(x)| < \varepsilon,$$

where $F = \bigcup_{i=0}^{lN-1} I_i \subset [0,1)$ is a union of intervals centered around $\frac{i}{lN}$, $i = 1, \ldots, lN - 1$, $I_0 = [0, \frac{\delta}{2lN}] \cup [1 - \frac{\delta}{2lN}, 1)$ and $\lambda(I_i) = \frac{\delta}{lN}$ for every i.

Proof. We define the function

$$s_{\beta,N,\varepsilon,\delta}(z) = \left(\sum_{i=0}^{l-1} \beta_i \cdot \left(e^{-A \cdot \sin(2\pi (Nz + \frac{1}{2}))} - e^{-A \cdot \sin(2\pi (Nz + \frac{1}{2}))} \right) \right) \cdot e^{-A \cdot \sin(2\pi Nz)}$$

$$+ \left(\sum_{i=1}^{lN-1} \beta_i \cdot \left(e^{-A \cdot \sin(2\pi (Nz + \frac{l}{2}))} - e^{-A \cdot \sin(2\pi (Nz + \frac{l}{2}))} \right) \right) \cdot e^{-A \cdot \sin(2\pi Nz)}.$$

We point out that $s_{\beta,N,\varepsilon,\delta}$ is a $\frac{1}{N}$-periodic real entire function. After choosing a large enough constant A, we can guarantee that $s_{\beta,N,\varepsilon,\delta}$ satisfies the conditions [3].

Recall ε_n and δ_n, that were defined in equation 3 and 2 respectively. With the aid of Lemma 3.6, we construct entire functions approximating the step functions defined above:
Explicit constructions

\[\psi_{1,n} = s_{\beta(1),N^{(1)},\epsilon_n,\delta_n}, \text{ where } \beta_0^{(1)} = 0, \beta_i^{(1)} = \frac{l_n - i}{2q_n \cdot l_n} \text{ for } i = 1, \ldots, l_n - 1, \ N^{(1)} = 1 \]
\[\psi_{2,n} = s_{\beta(2),N^{(2)},\epsilon_n,\delta_n}, \text{ where } \beta_0^{(2)} \text{ as above for } i = 0, \ldots, 2q_n - 1, \ N^{(2)} = q_n \]
\[\psi_{3,n} = s_{\beta(3),N^{(3)},\epsilon_n,\delta_n}, \text{ where } \beta_0^{(3)} = 0, \beta_i^{(3)} = \frac{i}{2q_n \cdot l_n} \text{ for } i = 1, \ldots, l_n - 1, \ N^{(3)} = 1 \]

Hereby, we define
\[\phi_{1,n}^{(d)} : \mathbb{T}^m \rightarrow \mathbb{T}^m, \quad \phi_{1,n}^{(d)}(x_1, \ldots, x_m) = (x_1 + \psi_{1,n}^{(d)}(x_d) \mod 1, x_2, \ldots, x_m) \]
\[\phi_{2,n}^{(d)} : \mathbb{T}^m \rightarrow \mathbb{T}^m, \quad \phi_{2,n}^{(d)}(x_1, \ldots, x_m) = (x_1, \ldots, x_{d-1}, x_d + \psi_{2,n}^{(d)}(x_1) \mod 1, x_{d+1}, \ldots, x_m) \]
\[\phi_{3,n}^{(d)} : \mathbb{T}^m \rightarrow \mathbb{T}^m, \quad \phi_{3,n}^{(d)}(x_1, \ldots, x_m) = (x_1 - \psi_{3,n}^{(d)}(x_d) \mod 1, x_2, \ldots, x_m) \]

Let \(\phi_n^{(d)} := \phi_{1,n}^{(d)} \circ \phi_{2,n}^{(d)} \circ \phi_{1,n}^{(d)} \). Since \(\psi_{2,n}^{(d)} \) is \(\frac{1}{m} \)-periodic, we have \(\phi_n^{(d)} \circ R_{\alpha_n} = R_{\alpha_n} \circ \phi_n^{(d)} \).

Finally, we define
\[\phi_n = \phi_n^{(2)} \circ \cdots \circ \phi_n^{(m)} \]
and observe \(\phi_n \circ R_{\alpha_n} = R_{\alpha_n} \circ \phi_n \).

Remark 3.7. We compute
\[\phi_n^{(d)}(x_1, \ldots, x_m) = (x_1 + \psi_{1,n}^{(d)}(x_d) - \psi_{3,n}^{(d)}(x_d + \psi_{2,n}^{(d)}(x_1) \mod 1, x_{d+1}, \ldots, x_m), x_2, \ldots, x_{d-1}, x_d + \psi_{2,n}^{(d)}(x_1 + \psi_{1,n}^{(d)}(x_d)), x_{d+1}, \ldots, x_m) \]

By the choice \(4 \cdot m \cdot \epsilon_n < \delta_n \), the exact positioning of the partition elements of \(\eta_n \) as well as \(\zeta_n \) and since the \(\psi_{1,n}^{(d)} \) are step functions, we have for a point \(z \) contained in one of the partition elements \(|[\phi_{1,n}^{(d)}(z)]_1 - [\tilde{\phi}_{1,n}^{(d)}(z)]_1| < 2\epsilon_n \) and \(|[\phi_{2,n}^{(d)}(z)]_d - [\tilde{\phi}_{2,n}^{(d)}(z)]_d| < \epsilon_n \), Continuing in this way we conclude \(|[\phi_n(z)] - [\tilde{\phi}_n(z)]| < 2 \cdot (m - 1) \cdot \epsilon_n \) and \(|[\phi_n(z)] - [\tilde{\phi}_n(z)]| < \epsilon_n \) in case of \(i = 2, \ldots, m \). For the inverse \(\phi_n^{(-1)} \) the same observations hold true.

We introduce the so-called “good set” \(J_n \subset \mathbb{T}^{m-1} \) in the \(x_2, \ldots, x_m \)-coordinates:

\[J_n = \bigcup_{i=2}^{m} \left[\frac{j_i}{l_n} + \delta_n + 2\epsilon_n, \frac{j_i + 1}{l_n} - \delta_n - 2\epsilon_n \right] \]

where the union is taken over \(j_i \in \mathbb{Z} \), \(0 \leq j_i \leq l_n - 1 \), for \(i = 2, \ldots, m \).

3.4 The conjugation map \(g_n \)

We aim at a real-analytic map, which introduces shear into the \(x_1 \)-coordinate similar to the map \(\tilde{g}_{[nq_n]}(x_1, \ldots, x_m) = (x_1 + [nq_n^2] \cdot x_2, \ldots, x_m) \), but acts as an almost-isometry on the elements of the partial partition \(\zeta_n \). For this purpose, we consider the following step function

\[\tilde{\psi}_n : [0,1) \rightarrow \mathbb{R} \text{ defined by } \tilde{\psi}_n(x) = \sum_{i=0}^{10n^2 \cdot q_n \cdot l_n^{m+1} - 1} \frac{i}{10n^2 \cdot q_n \cdot l_n^{m+1} \cdot \chi_{\left[\frac{10n^2 \cdot q_n \cdot l_n^{m+1} \cdot 10n^2 \cdot q_n \cdot l_n^{m+1}}{10n^2 \cdot q_n \cdot l_n^{m+1}} \right]}}(x) \]
Lemma 3.8. Let $a \in \mathbb{N}$ be even. We consider a step function of the form

$$s_a : [0,1) \rightarrow \mathbb{R} \text{ defined by } s_a(x) = \sum_{i=0}^{a-1} \frac{i}{a} \cdot \chi_{\left[\frac{i}{a}, \frac{i+1}{a}\right]}(x).$$

Then, given any $\varepsilon > 0$ and $\delta > 0$, there exists a 1-periodic real entire function $\hat{s}_{a,\varepsilon,\delta}$ satisfying

$$\sup_{x \in [0,1) \setminus F} \left| \hat{s}_{a,\varepsilon,\delta}(x) - s_a(x) \right| < \varepsilon \quad \text{and} \quad \sup_{x \in [0,1) \setminus F} \left| \hat{s}''_{a,\varepsilon,\delta}(x) \right| < \varepsilon,$$

where $F = \bigcup_{i=0}^{a-1} \mathbb{I}_i \subset [0,1)$ is a union of intervals centered around $\frac{i}{a}$, $i = 1, ..., a - 1$, $I_0 = [0, \frac{\delta}{2\pi}] \cup [1 - \frac{\delta}{2\pi}, 1)$ and $\lambda(I_i) = \frac{\delta}{\pi a}$ for every i.

Proof. By the same approach as in Lemma 3.6 we define the function

$$\hat{s}_{a,\varepsilon,\delta}(z) = \left(\sum_{i=1}^{a-1} \frac{1}{a} \cdot e^{-A \sin(2\pi(z - \frac{i}{a})))} \right) \cdot e^{-A \sin(2\pi z)} + \frac{1}{2} + \sum_{i=\frac{a-1}{2}+1}^{a-1} \frac{1}{a} \cdot e^{-A \sin(2\pi(z - \frac{i}{a})))} \cdot e^{-A \sin(2\pi z)}.$$

We point out that $\hat{s}_{a,\varepsilon,\delta}$ is a 1-periodic real entire function. After choosing a large enough constant A, we can guarantee that $\hat{s}_{a,\varepsilon,\delta}$ satisfies the conditions. \[\square\]

With the aid of Lemma 3.8 we can approximate the step function by an entire map:

$$\psi_n = \hat{s}_{10n^2, q_n \cdot m^{n+1}, \varepsilon, \delta, n}.$$

Hereby, we define the real-analytic diffeomorphism

$$g_n : T^m \rightarrow T^m, \quad g_n(x_1, ..., x_m) = \left(x_1 + \left[q_n \cdot \psi_n(x_2), x_2, ..., x_m\right]\right)$$

and observe $g_n \circ R_{\frac{1}{m}} = R_{\frac{1}{m}} \circ g_n$.

4 \quad (\gamma, \varepsilon)\text{-distribution}

For the sake of convenience, we denote the coordinates on T^m by $(\theta, r_1, ..., r_{m-1})$ below. We introduce the central notion in the proof of the criterion for weak mixing deduced in the next section:

Definition 4.1. Let $\Phi : T^m \rightarrow T^m$ be a diffeomorphism and $J \subset T^{m-1}$. We say that an element \tilde{I} of a partial partition is (γ, ε)-distributed on J under Φ, if the following properties are satisfied:

- $\Phi (\tilde{I})$ is contained in a set of the form $[c, c + \gamma] \times T^{m-1}$ for some $c \in S^1$.
- $\pi_F (\Phi (\tilde{I})) \supset J.$
• For every \((m-1)\)-dimensional interval \(\bar{J} \subseteq J\) it holds:

\[
\left| \frac{\mu \left(\bar{I} \cap \Phi^{-1} \left(S^1 \times \bar{J} \right) \right)}{\mu (\bar{I})} - \frac{\bar{\mu} (\bar{J})}{\bar{\mu} (\bar{I})} \right| \leq \epsilon \cdot \frac{\bar{\mu} (\bar{J})}{\bar{\mu} (\bar{I})},
\]

at which \(\bar{\mu}\) is the Lebesgue measure on \(T^m\).

Remark 4.2. Analogous to [FS05] we will call the third property “almost uniform distribution” of \(\bar{I}\) in the \(r_1, \ldots, r_{m-1}\)-coordinates. In the following we will often write it in the form of

\[
\left| \mu \left(\bar{I} \cap \Phi^{-1} \left(S^1 \times \bar{J} \right) \right) \cdot \bar{\mu} (\bar{J}) - \mu (\bar{I}) \cdot \bar{\mu} (\bar{J}) \right| \leq \epsilon \cdot \mu (\bar{I}) \cdot \bar{\mu} (\bar{J}).
\]

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.3. We consider the “good set” \(I_n\) defined in equation 6 as well as the diffeomorphism \(\Phi_n := \phi_n \circ R_{\eta_n}^{m_n} \circ \phi_n^{-1}\) with the conjugating maps \(\phi_n\) defined in section 3.3 and the numbers \(m_n\) as in section 3.1. Then the elements of the partition \(\eta_n\) are \(\left(\frac{3}{2q_n}, \frac{1}{q_n}\right)\)-distributed on \(J_n\) under \(\Phi_n\).

Proof. For \(I_{j_1, \ldots, j_m} \in \eta_n\) we compute \(\Phi_n (I_{j_1, \ldots, j_m})\). By the choice of \(m_n\) and Remark 3.2 we obtain modulo \(\frac{1}{q_n}\) in the \(x_1\)-coordinate:

\[
R_{\eta_{n+1}}^{m_n} \circ \tilde{\phi}_n^{-1} (I_{j_1, \ldots, j_m}) = \bigcup_{i=2}^m \left[\frac{1}{2q_n} + \frac{j_1}{2q_n l_n} + \frac{j_2}{2q_n l_n^2} + \cdots + \frac{j_{i-1}}{2q_n l_n^{i-1}} + \frac{1}{2q_n} + \frac{j_1}{2q_n l_n} + \cdots + \frac{j_m + 1}{2q_n l_n^m} \right] \times \prod_{i=2}^m \left[1 - \frac{t(i-1)}{l_n} + \delta_n, 1 - \frac{t(i-1) - 1}{l_n} - \delta_n \right].
\]

The application of \(\tilde{\phi}_n\) on this set yields:

\[
\bigcup \left[\frac{1}{2q_n} + \frac{j_1}{2q_n l_n} + \frac{j_2 + 2 \cdot t(1)}{2q_n l_n^2} + \cdots + \frac{j_{m+1} + 2 \cdot t(m-1) - l_n}{2q_n l_n^m} - \delta_n + a_n, \frac{1}{2q_n} + \frac{j_1}{2q_n l_n} + \cdots + \frac{j_m + 1}{2q_n l_n^m} \right] \times \prod_{i=2}^m \left[1 - \frac{t(i-1)}{l_n} + \delta_n, 1 - \frac{t(i-1) - 1}{l_n} - \delta_n \right]
\]

(apart from the case \(t(i) = 0\) we get \(\tilde{j}_{i+1}\) instead of \(j_{i+1} + 2 \cdot t(i) - l_n\)).

In the same way we compute \(\tilde{\phi}_n \circ R_{\eta_{n+1}}^{m_n} \circ \phi_n^{-1} (I_{j_1, \ldots, j_m})\):

\[
\bigcup \left[\frac{j_1}{2q_n l_n}, \frac{j_2}{2q_n l_n^2} + \cdots + \frac{j_m - 1}{2q_n l_n^m} - \delta_n + a_n, \frac{j_1}{2q_n l_n} + \cdots + \frac{j_m}{2q_n l_n^m} \right] \times \prod_{i=2}^m \left[2j_i + 1, 2j_i + 1 - \frac{t(i-1) + 1}{l_n} - \delta_n \right]
\]
Figure 1: Qualitative shape of the action of $\tilde{\phi}_{3,n}^{-1}$ on $I_{j_1,\ldots,j_m} \in \eta_n$ in case of dimension $m = 2$.

Figure 2: Qualitative shape of the action of $\tilde{\phi}_{n}^{-1}$ on $R_{\alpha_{n+1}} \circ \phi_{n}^{-1}(I_{j_1,\ldots,j_m})$ in case of dimension $m = 2$.
regarded as weak mixing.

We have to take the approximation error into account. By Remark 3.7 we observe for every \(\hat{I}_n \in \eta_n \) that for every of the \(l_n^{-m-1} \) cuboids belonging to \(\Phi_n (\hat{I}_n) \) is contained in a cuboid of \(\theta \)-width \(\frac{1}{2q_n l_n^m} - 2\delta_n - 8m \cdot \varepsilon_n \) and contains a cuboid of \(\theta \)-width \(\frac{1}{2q_n l_n^m} - 2\delta_n - 8m \cdot \varepsilon_n \).

In particular, we can choose \(\gamma = \frac{3}{4n} \). Let \(\hat{J} \subseteq J_n \subseteq \mathbb{T}^{m-1} \) be a multidimensional interval of length \(d_i \) in coordinate \(x_i \). Then we can estimate:

\[
\mu \left(\frac{\hat{I}_n \cap \Phi_n^{-1}\left(S^1 \times \hat{J} \right)}{\mu (\hat{I}_n)} \right) \leq \left(1 + 8m \cdot \varepsilon_n \cdot 2q_n \cdot l_n^m \cdot q_n \right) \cdot \frac{\left(\frac{1}{l_n^m} - 2\delta_n - 4\varepsilon_n \right)^m \cdot d_2 \cdot \ldots \cdot d_m}{\left(\frac{4q_n l_n^m}{l_n^m} - 2\delta_n \right)^{m-1}} \leq 1 + 32m \cdot \varepsilon_n \cdot q_n \cdot l_n^m \mu \left(\frac{\hat{J}}{\mu (J_n)} \right).
\]

Analogously we estimate

\[
\mu \left(\frac{\hat{I}_n \cap \Phi_n^{-1}\left(S^1 \times \hat{J} \right)}{\mu (\hat{I}_n)} \right) \geq \left(1 - 8m \cdot \varepsilon_n \cdot 2q_n l_n^m \cdot q_n \right) \cdot \frac{\left(\frac{1}{l_n^m} - 2\delta_n - 4\varepsilon_n \right)^m \cdot d_2 \cdot \ldots \cdot d_m}{\left(\frac{4q_n l_n^m}{l_n^m} - 2\delta_n \right)^{m-1}} \geq 1 - 32m \cdot \varepsilon_n \cdot q_n \cdot l_n^m \cdot (1 - (m - 1) \cdot 8\varepsilon_n \cdot l_n) \cdot \frac{\mu \left(\hat{J} \right)}{\mu (J_n)} \geq 1 - 40m \cdot \varepsilon_n \cdot q_n \cdot l_n^m \cdot \frac{\mu \left(\hat{J} \right)}{\mu (J_n)}.
\]

By our assumption on the number \(\varepsilon_n \) from equation 3 we conclude

\[
\left| \mu \left(\frac{\hat{I}_n \cap \Phi_n^{-1}\left(S^1 \times \hat{J} \right)}{\mu (\hat{I}_n)} \right) - \mu \left(\frac{\hat{J}}{\mu (J_n)} \right) \right| \leq \frac{1}{n} \mu \left(\frac{\hat{J}}{\mu (J_n)} \right).
\]

\[\square\]

5 Criterion for weak mixing

In this section we will prove a criterion for weak mixing on \(M = \mathbb{T}^m \) in the setting of the beforehand constructions. It is inspired by the criterion in [FS05] but modified in many places because of the new conjugation map \(g_n \) and the new type of partitions. For the derivation we need a couple of lemmas. The first one expresses the weak mixing property on the elements of a partial partition \(\eta_n \) generally:
Lemma 5.1. Let \(f \in \text{Diff}_c^r (T^m, \mu) \), \((m_n)_{n \in \mathbb{N}}\) be a sequence of natural numbers and \((\nu_n)_{n \in \mathbb{N}}\) be a sequence of partial partitions, where \(\nu_n \to \varepsilon \) and for every \(n \in \mathbb{N} \) \(\nu_n \) is the image of a partial partition \(\eta_n \) under a measure-preserving diffeomorphism \(F_n \), satisfying the following property: For every \(m \)-dimensional cube \(A \subseteq T^m \) and for every \(\epsilon > 0 \) there exists \(N \in \mathbb{N} \) such that for every \(n \geq N \) and for every \(\Gamma_n \in \nu_n \) we have

\[
|\mu (\Gamma_m \cap f^{-m} (A)) - \mu (\Gamma_n) \cdot \mu (A)| \leq 3 \cdot \varepsilon \cdot \mu (\Gamma_n) \cdot \mu (A).
\]

Then \(f \) is weak mixing.

Proof. By [Skl67] a diffeomorphism \(f \) is weak mixing if for all measurable sets \(A, B \subseteq M \) it holds:

\[
\lim_{n \to \infty} \left| \mu (B \cap f^{-m} (A)) - \mu (B) \cdot \mu (A) \right| = 0.
\]

Since every measurable set in \(M = T^m \) can be approximated by a countable disjoint union of \(m \)-dimensional cubes in \(T^m \) in arbitrary precision, we only have to prove the statement in case that \(A \) is a \(m \)-dimensional cube in \(T^m \).

Hence, we consider an arbitrary \(m \)-dimensional cube \(A \subseteq T^m \). Moreover, let \(B \subseteq M \) be a measurable set. Since \(\nu_n \to \varepsilon \) for every \(\varepsilon \in (0, 1] \) there are \(n \in \mathbb{N} \) and a set \(\hat{B} = \bigcup_{i \in \Lambda} \Gamma_n \), where \(\Gamma_i \in \nu_n \) and \(\Lambda \) is a countable set of indices, such that \(\mu (B \triangle \hat{B}) < \varepsilon \cdot \mu (B) \cdot \mu (A) \).

We obtain for sufficiently large \(n \):

\[
|\mu (B \cap f^{-m} (A)) - \mu (B) \cdot \mu (A)| \\
\leq |\mu (B \cap f^{-m} (A)) - \mu (\hat{B} \cap f^{-m} (A))| + |\mu (\hat{B} \cap f^{-m} (A)) - \mu (\hat{B}) \cdot \mu (A)| \\
+ |\mu (\hat{B}) \cdot \mu (A) - \mu (B) \cdot \mu (A)| \\
m = |\mu (B \cap f^{-m} (A)) - \mu (\hat{B} \cap f^{-m} (A))| \\
+ \left| \mu \left(\bigcup_{i \in \Lambda} (\Gamma_n \cap f^{-m} (A)) \right) - \mu \left(\bigcup_{i \in \Lambda} \Gamma_n \right) \cdot \mu (A) \right| + \mu (A) \cdot \left| \mu (\hat{B}) - \mu (B) \right| \\
\leq \mu (B \triangle \hat{B}) + \sum_{i \in \Lambda} \mu (\Gamma_n \cap f^{-m} (A)) - \mu (\Gamma_n) \cdot \mu (A) \right| + \mu (A) \cdot \mu (\hat{B} \triangle \hat{B}) \\
\leq \varepsilon \cdot \mu (B) \cdot \mu (A) + \sum_{i \in \Lambda} \left(\mu (\Gamma_n \cap f^{-m} (A)) - \mu (\Gamma_n) \cdot \mu (A) \right) + \varepsilon \cdot \mu (A)^2 \cdot \mu (B) \\
\leq \sum_{i \in \Lambda} (3 \cdot \varepsilon \cdot \mu (\Gamma_n) \cdot \mu (A)) + 2 \cdot \varepsilon \cdot \mu (A) \cdot \mu (B) = 3 \cdot \varepsilon \cdot \mu (A) \cdot \mu (B) + \left(\bigcup_{i \in \Lambda} \Gamma_n \right) + 2 \cdot \varepsilon \cdot \mu (A) \cdot \mu (B) \\
= 3 \cdot \varepsilon \cdot \mu (A) \cdot \mu (\hat{B}) + 2 \cdot \varepsilon \cdot \mu (A) \cdot \mu (B) \leq 3 \varepsilon \cdot \mu (A) \cdot \left(\mu (B) + \mu (\hat{B} \triangle \hat{B}) \right) + 2 \varepsilon \cdot \mu (A) \cdot \mu (B) \\
\leq 5 \cdot \varepsilon \cdot \mu (A) \cdot \mu (B) + 3 \cdot \varepsilon^2 \cdot \mu (A)^2 \cdot \mu (B).
\]

This estimate shows \(\lim_{n \to \infty} |\mu (B \cap f^{-m} (A)) - \mu (B) \cdot \mu (A)| = 0 \), because \(\varepsilon \) can be chosen arbitrarily small.

In property (8) we want to replace \(f \) by \(f_n \):

Lemma 5.2. Let \(f = \lim_{n \to \infty} f_n \) be a diffeomorphism obtained by the constructions in the preceding sections and \((m_n)_{n \in \mathbb{N}}\) be a sequence of natural numbers fulfilling \(d_0 (f^{m_n}, f^{m_n}_n) < \frac{1}{2^k} \).
Furthermore, let \((\nu_n)_{n \in \mathbb{N}}\) be a sequence of partial partitions, where \(\nu_n \to \varepsilon\) and for every \(n \in \mathbb{N}\) \(\nu_n\) is the image of a partial partition \(\eta_n\) under a measure-preserving diffeomorphism \(F_n\), satisfying the following property: For every \(m\)-dimensional cube \(A \subseteq \mathbb{T}^m\) and for every \(\varepsilon \in (0, 1]\) there exists \(N \in \mathbb{N}\) such that for every \(n \geq N\) and for every \(\Gamma_n \in \nu_n\) we have

\[
|\mu(\Gamma_n \cap f_{-n}^m(A)) - \mu(\Gamma_n) \cdot \mu(A)| \leq \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A).
\]

Then \(f\) is weak mixing.

Proof. We want to show that the requirements of Lemma 5.1 are fulfilled. This implies that \(f\) is weak mixing. For it let \(A \subseteq \mathbb{T}^m\) be an arbitrary \(m\)-dimensional cube and \(\varepsilon \in (0, 1]\). We consider two \(m\)-dimensional cubes \(A_1, A_2 \subseteq \mathbb{T}^m\) with \(A_1 \subset A \subset A_2\) as well as \(\mu(A \triangle A_i) < \varepsilon \cdot \mu(A)\) and for sufficiently large \(n\): \(\text{dist}(\partial A, \partial A_i) > \frac{1}{3}\) for \(i = 1, 2\).

If \(n\) is sufficiently large, we obtain for \(\Gamma_n \in \nu_n\) and for \(i = 1, 2\) by the assumptions of this Lemma:

\[
|\mu(\Gamma_n \cap f_{-n}^m(A_i)) - \mu(\Gamma_n) \cdot \mu(A)| \leq \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A_i).
\]

Herefrom we conclude \((1 - \varepsilon) \cdot \mu(\Gamma_n) \cdot \mu(A_1) \leq \mu(\Gamma_n \cap f_{-n}^m(A_1))\) on the one hand and \(\mu(\Gamma_n \cap f_{-n}^m(A_2)) \leq (1 + \varepsilon) \cdot \mu(\Gamma_n) \cdot \mu(A_2)\) on the other hand. Because of \(d_0(f_{-n}^m, f_{n}^m) < \frac{1}{2}\) the following relations are true:

\[
f_{-n}^m(x) \in A_1 \implies f_{-n}^m(x) \in A,
\]

\[
f_{n}^m(x) \in A \implies f_{n}^m(x) \in A_2.
\]

Thus: \(\mu(\Gamma_n \cap f_{-n}^m(A_1)) \leq \mu(\Gamma_n \cap f_{-n}^m(A)) \leq \mu(\Gamma_n \cap f_{-n}^m(A_2))\).

Altogether, it holds: \((1 - \varepsilon) \cdot \mu(\Gamma_n) \cdot \mu(A_1) \leq \mu(\Gamma_n \cap f_{-n}^m(A)) \leq (1 + \varepsilon) \cdot \mu(\Gamma_n) \cdot \mu(A_2)\).

We therewith obtain the following estimate from above:

\[
\mu(\Gamma_n \cap f_{-n}^m(A)) - \mu(\Gamma_n) \cdot \mu(A)
\]

\[
\leq (1 + \varepsilon) \cdot \mu(\Gamma_n) \cdot \mu(A_2) - \mu(\Gamma_n) \cdot \mu(A_2) + \mu(\Gamma_n) \cdot (\mu(A_2) - \mu(A))
\]

\[
\leq \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A_2) + \mu(\Gamma_n) \cdot \mu(\varepsilon \mu(A) + \mu(\varepsilon \mu(A) + \mu(A_2 \triangle A)) + \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A)
\]

\[
\leq 2 \cdot \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A) + \varepsilon^2 \cdot \mu(\Gamma_n) \cdot \mu(A) \leq 3 \cdot \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A).
\]

Thus, we deduce the following estimate from below in an analogous way:

\[
\mu(\Gamma_n \cap f_{-n}^m(A)) - \mu(\Gamma_n) \cdot \mu(A) \geq -3 \cdot \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A).
\]

Hence, we get: \(\mu(\Gamma_n \cap f_{-n}^m(A)) - \mu(\Gamma_n) \cdot \mu(A) \leq 3 \cdot \varepsilon \cdot \mu(\Gamma_n) \cdot \mu(A),\) i.e. the requirements of Lemma 5.1 are met.

Now we concentrate on the setting of our explicit constructions:

Lemma 5.3. Consider the sequence of partial partitions \((\eta_n)_{n \in \mathbb{N}}\) constructed in section 3.2.4 and the diffeomorphisms \(g_n\) from chapter 3.4. Furthermore, we define the partial partitions \(\nu_n = \left\{\Gamma_n = H_{n-1} \circ g_n(\hat{I}_n) : \hat{I}_n \in \eta_n\right\}\). Then we get \(\nu_n \to \varepsilon\).

Proof. By construction \(\eta_n = \left\{\hat{I}_n : i \in \Lambda_n\right\}\), where \(\Lambda_n\) is a countable set of indices. Because of \(\eta_n \to \varepsilon\) it holds \(\lim_{n \to \infty} \mu\left(\bigcup_{i \in \Lambda_n} \hat{I}_n^i\right) = 1\). Since \(H_{n-1} \circ g_n\) is measure-preserving, we conclude:

\[
\lim_{n \to \infty} \mu\left(\bigcup_{i \in \Lambda_n} \Gamma_n^i\right) = \lim_{n \to \infty} \mu\left(\bigcup_{i \in \Lambda_n} H_{n-1} \circ g_n(\hat{I}_n)\right) = \lim_{n \to \infty} \mu\left(H_{n-1} \circ g_n\left(\bigcup_{i \in \Lambda_n} \hat{I}_n^i\right)\right) = 1.
\]
Lemma 5.4. Given an interval K on the r_1-axis and a $(m-2)$-dimensional interval Z in the
(r_2, \ldots, r_{m-1})-coordinates $K_{c,\gamma}$ denotes the cuboid $[c, c + \gamma] \times K \times Z$ for some $\gamma > 0$. We consider the diffeomorphism g_n constructed in subsection 3.4 and an interval $L = [l_1, l_2]$ of \mathbb{S}^1 satisfying
\[\lambda (L) \geq \frac{4}{[nq_n^m]}. \]
If $[nq_n^m] \cdot \lambda (K) > 2$, then for the set $Q := \pi_F (K_{c,\gamma} \cap g_n^{-1} (L \times K \times Z))$ we have:
\[
\left| \hat{\mu} (Q) - \lambda (K) \cdot \hat{\lambda} (L) \cdot \mu^{(m-2)} (Z) \right| \\
\leq \left(\frac{2}{[nq_n^m]} \cdot \hat{\lambda} (L) + \frac{2 \cdot \gamma}{[nq_n^m]} + \frac{\lambda (K) \cdot 4}{a} + \frac{8}{a} \right) \cdot \mu^{(m-2)} (Z).
\]

Proof. We consider the diffeomorphism $\tilde{g}_n : M \to M$, $(\theta, r_1, \ldots, r_{m-1}) \mapsto (\theta + b \cdot r_1, r_1, \ldots, r_{m-1})$ and the set:
\[
Q_b := \pi_F (K_{c,\gamma} \cap \tilde{g}_n^{-1} (L \times K \times Z)) \\
= \{(r_1, r_2, \ldots, r_{m-1}) \in K \times Z : (\theta + b \cdot r_1, r) \in L \times K \times Z, \theta \in [c, c + \gamma] \} \\
= \{(r_1, r_2, \ldots, r_{m-1}) \in K \times Z : b \cdot r_1 \in [l_1 - c - \gamma, l_2 - c] \mod 1 \}.
\]
The interval $b \cdot K$ seen as an interval in \mathbb{R} does not intersect more than $b \cdot \lambda (K)$ + 2 and not less than $b \cdot \lambda (K)$ - 2 intervals of the form $[i, i + 1]$ with $i \in \mathbb{Z}$.

Claim: A resulting interval on the r_1-axis of $K_{c,\gamma} \cap \tilde{g}_n^{-1} (L \times K \times Z)$ and the corresponding r_1-projection of $K_{c,\gamma} \cap g_n^{-1} (L \times K \times Z)$ can differ by a length of at most $\frac{4}{a}$.

Proof: Recall that \tilde{g}_n is constructed as the approximation of the step function \tilde{g}_n. Obviously, $\tilde{g}_n (K_{c,\gamma})$ may hit (respectively leave) $L \times K \times Z$ at most one $\frac{1}{a}$-domain on the r_1-axis later than $\tilde{g}_n^{-1} (K_{c,\gamma})$ (see figure 3).

Moreover, the approximation error between g_n and \tilde{g}_n can cause an additional deviation of at most $\frac{1}{a}$-domain on the r_1-axis and can cause an additional deviation of at most $\frac{1}{a} \varepsilon_n$ on the θ-axis. Since $[nq_n^m] \cdot \varepsilon_n < \frac{1}{a}$ this discrepancy will be equalised after at most one $\frac{1}{a}$-domain on the r_1-axis. This last difference can occur on both ends of the resulting interval on the r_1-axis.

Therefore, we compute on the one side:
\[
\hat{\mu} (Q) \leq \left[[nq_n^m] \cdot \lambda (K) + 2 \right] \cdot \left(\frac{l_2 - (l_1 - \gamma)}{[nq_n^m]} + \frac{4}{a} \right) \cdot \mu^{(m-2)} (Z) \\
= \left(\lambda (K) \cdot \hat{\lambda} (L) + 2 \cdot \frac{\hat{\lambda} (L)}{[nq_n^m]} + \lambda (K) \cdot \gamma + \frac{\lambda (K) \cdot 4}{a} + \frac{8}{a} \right) \cdot \mu^{(m-2)} (Z)
\]
and on the other side
\[
\tilde{\mu}(Q) \geq \left(\left\lfloor nq_n^m \right\rfloor \cdot \lambda(K) - 2 \cdot \left(\frac{l_2 - (l_1 - \gamma)}{\left\lfloor nq_n^m \right\rfloor} \right) - \frac{4}{a} \right) \cdot \mu^{(m-2)}(Z)
\]
\[
= \left(\lambda(K) \cdot \tilde{\lambda}(L) - 2 \cdot \frac{\tilde{\lambda}(L)}{\left\lfloor nq_n^m \right\rfloor} + \lambda(K) \cdot \gamma - \frac{2 \cdot \gamma}{\left\lfloor nq_n^m \right\rfloor} \cdot \frac{\lambda(K)}{a} - \frac{8}{a} \right) \cdot \mu^{(m-2)}(Z).
\]

Both equations together yield:
\[
\left| \tilde{\mu}(Q) - \lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z) - \gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z) - \frac{8}{a} \cdot \mu^{(m-2)}(Z) \right|
\]
\[
\leq \left(\frac{2}{\left\lfloor nq_n^m \right\rfloor} \cdot \tilde{\lambda}(L) + \frac{2 \cdot \gamma}{\left\lfloor nq_n^m \right\rfloor} + \frac{\left\lfloor nq_n^m \right\rfloor \cdot \lambda(K)}{a} \cdot \frac{4}{a} \right) \cdot \mu^{(m-2)}(Z).
\]

The claim follows because
\[
\left| \tilde{\mu}(Q) - \lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z) - \gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z) - \frac{8}{a} \cdot \mu^{(m-2)}(Z) \right|
\]
\[
\leq \left| \tilde{\mu}(Q) - \lambda(K) \cdot \tilde{\lambda}(L) \cdot \mu^{(m-2)}(Z) - \gamma \cdot \lambda(K) \cdot \mu^{(m-2)}(Z) - \frac{8}{a} \cdot \mu^{(m-2)}(Z) \right|.
\]

Lemma 5.5. Let \(n \geq 5 \), \(g_n \) as in section 3.4 and \(\tilde{I}_n \in \eta_n \), where \(\eta_n \) is the partial partition constructed in section 3.2.1. For the diffeomorphism \(\phi_{\alpha_n} \) constructed in section 3.3 and \(m_n \) as in section 3.1 we consider \(\Phi_{\alpha_n} = \phi_{\alpha_n} \circ \Phi_{\alpha_{n+1}} \circ \phi_{\alpha_n}^{-1} \) and \(J_n \subset T_{m-1} \) defined in equation 6. Then for every \(m \)-dimensional cube \(S \) of side length \(q_n^{-\sigma} \) lying in \(T^m \) we get
\[
\mu \left(\tilde{I} \cap \Phi_{\alpha_n}^{-1} \circ g_n^{-1}(S) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\tilde{I} \right) \cdot \mu \left(S \right) \leq \frac{22}{n} \cdot \mu \left(\tilde{I} \right) \cdot \mu \left(S \right).
\]
In other words this Lemma tells us that a partition element is “almost uniformly distributed” under \(g_n \circ \Phi_n \) on the whole manifold \(M = \mathbb{T}^m \).

Proof. Let \(S \) be a \(m \)-dimensional cube with sidelength \(q_n^{-\sigma} \) lying in \(\mathbb{T}^m \). Furthermore, we denote:

\[
S_\theta = \pi_\theta (S) \quad S_{r_1} = \pi_{r_1} (S) \quad S_{r} = \pi_{(r_2, \ldots, r_{m-1})} (S) \quad S_r = S_{r_1} \times S_{r} = \pi_r (S)
\]

Obviously: \(\tilde{\lambda} (S_{\theta}) = \lambda (S_{r_1}) = q_n^{-\sigma} \) and \(\tilde{\lambda} (S_\theta) \cdot \lambda (S_{r_1}) \cdot \mu^{(m-2)} (S_{r}) = \mu (S) = q_n^{-m \sigma} \).

According to Lemma 4.3, \(\Phi_n \left(\frac{3}{q_n^4 \cdot \varepsilon} \right) \)-distributes the partition element \(\tilde{I} \in \eta_n \) on \(J_n \), in particular \(\Phi_n \left(\frac{3}{q_n^4 \cdot \varepsilon} \right) \subseteq [c, c + \gamma] \times \mathbb{T}^{m-1} \) for some \(c \in \mathbb{S}^1 \) and some \(\gamma \leq \frac{3}{q_n^4 \cdot \varepsilon} \).

We introduce the set \(\tilde{S}_r := S_r \cap J_n \) and therewith \(\tilde{S} := S_\theta \times \tilde{S}_r \). In order to estimate \(\mu \left(S \setminus \tilde{S} \right) \) we observe that in each coordinate \(r_1, \ldots, r_{m-1} \) there is a “bad domain” of \(\phi_n \) of length \(2\delta_n + 4\varepsilon_n \) in each \(\frac{1}{n} \)-domain. Hence, \(S_r \) contains at most \(\left(l_n \cdot q_n^{-\sigma} + 2 \right)^{m-1} \) “bad domains” of measure \(\frac{2\delta_n + 4\varepsilon_n}{n} \) in \(\mathbb{T}^{m-1} \). Then:

\[
\mu \left(S \setminus \tilde{S} \right) \leq \frac{2\delta_n + 4\varepsilon_n}{n} \cdot \left(l_n \cdot q_n^{-\sigma} + 2 \right)^{m-1} \cdot q_n^{-\sigma} \leq \left(4\delta_n + 8\varepsilon_n \right) \cdot l_n \cdot \mu(S) < 5\delta_n \cdot l_n \cdot \mu(S).
\]

Using the triangle inequality we obtain:

\[
\left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1}(S) \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\tilde{I} \right) \cdot \mu (S) \right| \\
\leq \left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1}(S) \right) \right) - \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1} \left(\tilde{S} \right) \right) \right) \right| \cdot \tilde{\mu} (J_n) \\
+ \left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1} \left(\tilde{S} \right) \right) \right) \right| \cdot \tilde{\mu} (J_n) - \mu \left(\tilde{I} \right) \cdot \mu \left(\tilde{S} \right) + \mu \left(\tilde{I} \right) \cdot \mu \left(\tilde{S} \right) - \mu \left(\tilde{I} \right) \cdot \mu (S) \right|.
\]

Since \(\Phi_n \) and \(g_n \) are measure-preserving, we observe by our choice of \(\delta_n \) in equation 2:

\[
\left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1}(S) \right) \right) - \mu \left(\tilde{I} \right) \cdot \mu (S) \right| \leq \frac{5\delta_n \cdot l_n \cdot \mu(S) \cdot \tilde{\mu} (J_n)}{n} \leq \frac{1}{n} \cdot \mu (S) \cdot \mu (\tilde{I})
\]

Thus, we obtain:

\[
\left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1}(S) \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\tilde{I} \right) \cdot \mu (S) \right| \\
\leq \left| \mu \left(\tilde{I} \cap \Phi_n^{-1} \left(g_n^{-1} \left(\tilde{S} \right) \right) \right) \right| \cdot \tilde{\mu} (J_n) - \mu \left(\tilde{I} \right) \cdot \mu \left(\tilde{S} \right) + \frac{2}{n} \cdot \mu (S) \cdot \mu (\tilde{I})
\]

Next, we want to estimate the first summand. By construction of the map \(g_n \) and the definition of \(\tilde{S} \) it holds: \(\Phi_n \left(\tilde{I} \right) \cap g_n^{-1} \left(\tilde{S} \right) \subseteq [c, c + \gamma] \times \tilde{S}_\varepsilon := K_{c, \gamma} \). Because of Lemma 4.3 we have \(2\gamma \leq \frac{6}{q_n^4 \cdot \varepsilon} < q_n^{-\sigma} \). So we can define a cuboid \(S_1 \subseteq \tilde{S} \), where \(S_1 := [s_1 + \gamma, s_2 - \gamma] \times \tilde{S}_\varepsilon \). Using the notation \(S_\theta = [s_1, s_2] \). We examine the two sets

\[
Q := \pi_\varepsilon \left(K_{c, \gamma} \cap g_n^{-1} \left(S_\theta \times \tilde{S}_\varepsilon \right) \right) \quad Q_1 := \pi_\varepsilon \left(K_{c, \gamma} \cap g_n^{-1} \left([s_1 + \gamma, s_2 - \gamma] \times \tilde{S}_\varepsilon \right) \right)
\]

As seen above \(\Phi_n \left(\tilde{I} \right) \cap g_n^{-1} \left(\tilde{S} \right) \subseteq K_{c, \gamma} \). Hence \(\Phi_n \left(\tilde{I} \right) \cap g_n^{-1} \left(\tilde{S} \right) \subseteq \Phi_n \left(\tilde{I} \right) \cap g_n^{-1} \left(\tilde{S} \right) \cap K_{c, \gamma} \), which implies \(\Phi_n \left(\tilde{I} \right) \cap g_n^{-1} \left(\tilde{S} \right) \subseteq \Phi_n \left(\tilde{I} \right) \cap \left(\mathbb{S}^1 \times Q \right) \).
Claim: On the other hand: \(\Phi_n \left(\hat{I} \right) \cap (S^1 \times Q_1) \subseteq \Phi_n \left(\hat{I} \right) \cap g_{n^{-1}}^{-1} (\tilde{S}) \).

Proof of the claim: For \((\theta, r) \in \Phi_n \left(\hat{I} \right) \cap (S^1 \times Q_1)\) arbitrary it holds \((\theta, r) \in \Phi_n \left(\hat{I} \right)\), i.e. \(\theta \in [c, c + \gamma]\), and \(r \in \pi_r \left(K_{c, \gamma} \cap g_{n^{-1}}^{-1} ([s_1 + \gamma, s_2 - \gamma] \times \tilde{S}_r) \right)\). This implies the existence of \(\tilde{\theta} \in [c, c + \gamma]\) satisfying \((\tilde{\theta}, \tilde{r}) \in K_{c, \gamma} \cap g_{n^{-1}}^{-1} (S_1)\). Hence, there is \(\beta \in [s_1 + \gamma, s_2 - \gamma]\) such that \(g_n (\tilde{\theta}, \tilde{r}) = (\beta, \tilde{r})\). Additionally, we observe that \(g_n\) maps sets of the form \(I \times r\), where \(I \subseteq S^1\) is an interval, on a set of the form \(\hat{I} \times \tilde{r}\) with an interval \(\hat{I} \subseteq S^1\) and preserves the length of the interval. Since \(|\theta - \tilde{\theta}| \leq \gamma\) there is \(\beta \in [s_1, s_2]\) satisfying \(g_n (\theta, r) = (\beta, r)\). Thus, \((\theta, r) \in \Phi_n \left(\hat{I} \right) \cap g_{n^{-1}}^{-1} (\tilde{S})\).

Altogether, the following inclusions are true:

\[
\Phi_n \left(\hat{I} \right) \cap (S^1 \times Q_1) \subseteq \Phi_n \left(\hat{I} \right) \cap g_{n^{-1}}^{-1} (\tilde{S}) \subseteq \Phi_n \left(\hat{I} \right) \cap (S^1 \times Q)
\]

Thus, we obtain:

\[
\left| \mu \left(I \cap \Phi_n^{-1} \left(g_{n^{-1}}^{-1} (\tilde{S}) \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\hat{I} \right) \cdot \mu (\tilde{S}) \right| \leq \max \left(\left| \mu \left(I \cap \Phi_n^{-1} \left(S^1 \times Q \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\hat{I} \right) \cdot \mu (\tilde{S}) \right|, \right.
\]

\[
\left. \left| \mu \left(I \cap \Phi_n^{-1} \left(S^1 \times Q_1 \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\hat{I} \right) \cdot \mu (\tilde{S}) \right| \right) \right)
\]

(12)

We want to apply Lemma 3.4 for \(K = \tilde{S}_r, L = S_R, Z = S_R\) and \(b = \left[n \cdot q_n^a \right]\) (note that \(\frac{4 \cdot [n q_n^a]^a}{10n^2 q_n a} < \frac{1}{q_n} = \lambda (L)\) and for \(n > 4, b \cdot \lambda (K) = [n q_n^a] \cdot q_n^a > \frac{2}{a} n q_n^a \cdot q_n^a > 2\):

\[
\left| \tilde{\mu} (Q) - \mu (\tilde{S}) \right| = \left(\frac{2}{[n \cdot q_n]^a} \cdot \lambda (S_R) + \frac{2 \gamma}{[n \cdot q_n]^a} + \frac{[n q_n^a] \cdot \lambda (\tilde{S}_r) \cdot 4}{a} + \frac{8}{a} \right) \cdot \mu (m^{-2}) (S_R) \leq \left(\frac{4}{n \cdot q_n^a} \cdot \lambda (S_R) + \frac{4}{n \cdot q_n^a} \cdot \frac{1}{n \cdot q_n^a} \cdot \lambda (S_R) + \frac{1}{n \cdot q_n^a} \right) \cdot \mu (m^{-2}) (S_R) \leq \frac{14}{n} \cdot \mu (S).
\]

In particular, we receive from this estimate: \(\frac{14}{n} \cdot \mu (S) \geq \tilde{\mu} (Q) - \mu (\tilde{S}) \geq \tilde{\mu} (Q) - \mu (S)\), hence:

\[
\tilde{\mu} (Q) \leq \left(1 + \frac{14}{n} \right) \cdot \mu (S) \leq 4 \cdot \mu (S).
\]

Analogously we obtain: \(\tilde{\mu} (Q_1) \leq 4 \cdot \mu (S)\) as well as \(|\tilde{\mu} (Q_1) - \mu (S_1)| \leq \frac{14}{n} \cdot \mu (S)\).

Since \(Q\) as well as \(Q_1\) are a finite union of disjoint \((m - 1)\)-dimensional intervals contained in \(J_n\) and \(\Phi_n \left(\frac{3}{q_n a} \cdot \frac{1}{n} \right)\) distributes the interval \(I\) on \(J_n\), we get:

\[
\left| \mu \left(I \cap \Phi_n^{-1} \left(S^1 \times Q \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\hat{I} \right) \cdot \tilde{\mu} (Q) \right| \leq \frac{1}{n} \cdot \mu \left(\hat{I} \right) \cdot \tilde{\mu} (Q) \leq \frac{4}{n} \cdot \mu \left(\hat{I} \right) \cdot \mu (S)
\]

as well as

\[
\left| \mu \left(I \cap \Phi_n^{-1} \left(S^1 \times Q_1 \right) \right) \cdot \tilde{\mu} (J_n) - \mu \left(\hat{I} \right) \cdot \tilde{\mu} (Q_1) \right| \leq \frac{1}{n} \cdot \mu \left(\hat{I} \right) \cdot \tilde{\mu} (Q_1) \leq \frac{4}{n} \cdot \mu \left(\hat{I} \right) \cdot \mu (S).
\]
Now we can proceed
\[\left| \mu \left(\hat{1} \cap \Phi_n^{-1} \left(S_1 \times Q \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{1} \right) \cdot \mu \left(\hat{S} \right) \right| \]
\[\leq \left| \mu \left(\hat{1} \cap \Phi_n^{-1} \left(S_1 \times Q \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{1} \right) \cdot \tilde{\mu} \left(Q \right) + \mu \left(\hat{1} \right) \cdot \tilde{\mu} \left(Q \right) - \mu \left(\hat{S} \right) \right| \]
\[\leq \frac{4}{n} \cdot \mu \left(\hat{1} \right) \cdot \mu \left(S \right) + \mu \left(\hat{1} \right) \cdot \frac{14}{n} \cdot \mu \left(S \right) = \frac{18}{n} \cdot \mu \left(\hat{1} \right) \cdot \mu \left(S \right). \]

Noting that \(\mu \left(S_1 \right) = \mu \left(\hat{S} \right) - 2\gamma \cdot \tilde{\mu} \left(\hat{S}_n \right) \) and so \(\mu \left(\hat{S} \right) - \mu \left(S_1 \right) \leq 2 \cdot \frac{1}{4n} \cdot \tilde{\mu} \left(\hat{S}_n \right) \leq \frac{2}{n} \cdot \mu \left(S \right) \)
we obtain in the same way as above:
\[\left| \mu \left(\hat{1} \cap \Phi_n^{-1} \left(S_1 \times Q_1 \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{1} \right) \cdot \mu \left(\hat{S} \right) \right| \leq \frac{20}{n} \cdot \mu \left(\hat{1} \right) \cdot \mu \left(S \right). \]

Using equation \((12)\) this yields:
\[\left| \mu \left(\hat{1} \cap \Phi_n^{-1} \left(g_n^{-1} \left(\hat{S} \right) \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{1} \right) \cdot \mu \left(\hat{S} \right) \right| \leq \frac{20}{n} \cdot \mu \left(\hat{1} \right) \cdot \mu \left(S \right). \]

Finally, we conclude with the aid of equation \((11)\)
\[\left| \mu \left(\hat{1} \cap \Phi_n^{-1} \left(g_n^{-1} \left(S \right) \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{1} \right) \cdot \mu \left(S \right) \right| \leq \frac{22}{n} \cdot \mu \left(\hat{1} \right) \cdot \mu \left(S \right). \]

Now we are able to prove the aimed criterion for weak mixing.

Proposition 5.6 (Criterion for weak mixing). Let \(f_n = H_{n} \circ R_{n+1} \circ H_{n-1}^{-1} \) and the sequence \((m_n)_{n \in \mathbb{N}}\) be constructed as in the previous sections. Suppose additionally that \(d_{0} \left(f^{m_n}, f^{m_n} \right) < \frac{1}{2n} \)
and \(\| DH_{n-1} \|_{0} < \ln \left(q_n \right) \) for every \(n \in \mathbb{N} \) and that the limit \(f = \lim_{n \to \infty} f_n \) exists.
Then \(f \) is weak mixing.

Proof. To apply Lemma \((5.2)\) we consider the partial partitions \(\nu_n := H_{n-1} \circ g_n \left(\eta_n \right) \). As proven in Lemma \((5.3)\) these partial partitions satisfy \(\nu_n \to \varepsilon \). We have to establish equation \((9)\). For this purpose, let \(\varepsilon > 0 \) and a \(m \)-dimensional cube \(A \subseteq \mathbb{T}^m \) be given.
Furthermore, we note \(f^{m_n} = H_{n} \circ R_{n+1}^{-1} \circ H_{n-1}^{-1} = H_{n-1} \circ g_n \circ \Phi_n \circ g_{n-1}^{-1} \circ H_{n-1}^{-1} \).
Let \(S_n \) be a \(m \)-dimensional cube of side length \(q_{n}^{-1} \) contained in \(\mathbb{T}^m \). We look at \(C_n := H_{n-1} \left(S_n \right) \), \(\Gamma_n \in \nu_n \), and compute (since \(g_n \) and \(H_{n-1} \) are measure-preserving):
\[\left| \mu \left(\Gamma_n \cap f_{n}^{-m_n} \left(C_n \right) \right) - \mu \left(\Gamma_n \right) \cdot \mu \left(C_n \right) \right| = \left| \mu \left(\hat{I}_n \cap \Phi_n^{-1} \cap g_n^{-1} \left(S_n \right) \right) - \mu \right. \left(\hat{I}_n \right) \cdot \mu \left(S_n \right) \right| \]
\[\leq \frac{1}{\tilde{\mu} \left(J_n \right)} \cdot \mu \left(\hat{I}_n \cap \Phi_n^{-1} \cap g_n^{-1} \left(S_n \right) \right) \cdot \tilde{\mu} \left(J_n \right) - \mu \left(\hat{I}_n \right) \cdot \mu \left(J_n \right) + \frac{1 - \tilde{\mu} \left(J_n \right)}{\mu \left(\hat{I}_n \right)} \cdot \mu \left(\hat{I}_n \right) \cdot \mu \left(J_n \right) \]
Bernoulli’s inequality yields: \(\tilde{\mu} \left(J_n \right) \geq (1 - \frac{1}{n})^{m-1} \geq 1 + (m - 1) \cdot \left(-\frac{1}{n} \right) = 1 - \frac{m-1}{n} \). Hence, we obtain for \(n > 2 \cdot (m - 1) \): \(\tilde{\mu} \left(J_n \right) \geq \frac{1}{2} \) and so: \(\frac{1 - \tilde{\mu} \left(J_n \right)}{\mu \left(J_n \right)} \leq 2 \cdot (1 - \tilde{\mu} \left(J_n \right)) \leq 2 \cdot \frac{m - 1}{n} \). We continue by applying Lemma \((5.5)\)
\[\left| \mu \left(\Gamma_n \cap f_{n}^{-m_n} \left(C_n \right) \right) - \mu \left(\Gamma_n \right) \cdot \mu \left(C_n \right) \right| \leq 2 \cdot \frac{22}{n} \cdot \mu \left(\hat{I}_n \right) \cdot \mu \left(S_n \right) + \frac{2}{n} \cdot \left(m - 1 \right) \cdot \mu \left(\hat{I}_n \right) \cdot \mu \left(S_n \right) \]
\[= \frac{42}{n} + 2 \cdot \frac{m}{n} \cdot \mu \left(\hat{I}_n \right) \cdot \mu \left(S_n \right) \]
Moreover, by our assumptions it holds \(\text{diam}(C_n) \leq \|DH_n\|_0 \cdot \text{diam}(S_n) \leq \ln(q_n) \cdot \sqrt{\frac{p^m}{q_n}},\) i.e. \(\text{diam}(C_n) \to 0\) as \(n \to \infty\). Thus, we can approximate \(A\) by a countable disjoint union of sets \(C_n = H_{n-1}(S_n)\) with \(S_n \subseteq \mathbb{T}^m\) a \(m\)-dimensional cube of sidelength \(q_n^{-\sigma}\) in given precision, when \(n\) is chosen large enough. Consequently for \(n\) sufficiently large there are sets \(A_1 = \bigcup_{i \in \Sigma_1^n} C_i^n\) and \(A_2 = \bigcup_{i \in \Sigma_2^n} C_i^n\) with countable sets \(\Sigma_1^n\) and \(\Sigma_2^n\) of indices satisfying \(A_1 \subseteq A \subseteq A_2\) as well as \(|\mu(A) - \mu(A_i)| \leq \frac{\epsilon}{2} \cdot \mu(A)\) for \(i = 1, 2\).

Additionally we choose \(n\) such that \(\frac{42 + 2m}{n} < \frac{\epsilon}{3}\) holds. It follows:

\[
\mu \left(\Gamma_n \cap f_n^{m_{n}}(A) \right) - \mu \left(\Gamma_n \right) \cdot \mu \left(A \right)
\leq \mu \left(\Gamma_n \cap f_n^{m_{n}}(A_2) \right) - \mu \left(\Gamma_n \right) \cdot \mu \left(A_2 \right) + \mu \left(\Gamma_n \right) \cdot \left(\mu (A_2) - \mu (A) \right)
\leq \mu \left(\Gamma_n \cap f_n^{m_{n}}(C_i^n) \right) - \mu \left(\Gamma_n \right) \cdot \left(\mu (C_i^n) + \frac{\epsilon}{3} \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right) \right)
\leq \mu \left(\Gamma_n \cap f_n^{m_{n}}(C_i^n) \right) + \frac{\epsilon}{3} \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right)
\leq \frac{\epsilon}{3} \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right) + \frac{\epsilon}{3} \cdot \mu \left(\Gamma_n \right) \cdot \left(\mu (A_2) - \mu (A) \right) + \frac{\epsilon}{3} \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right) \leq \epsilon \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right).
\]

Analogously we estimate: \(\mu \left(\Gamma_n \cap f_n^{m_{n}}(A) \right) - \mu \left(\Gamma_n \right) \cdot \mu \left(A \right) \geq -\epsilon \cdot \mu \left(\Gamma_n \right) \cdot \mu \left(A \right)\). Both estimates enable us to conclude: \(|\mu(\Gamma_n \cap f_n^{m_{n}}(A)) - \mu(\Gamma_n) \cdot \mu(A)| \leq \epsilon \cdot \mu(\Gamma_n) \cdot \mu(A)\).

\section{Proof of convergence of \((f_n)_{n \in \mathbb{N}}\) in \(\text{Diff}_\mu^m(\mathbb{T}^m, \mu)\)}

Let \(\epsilon > 0\) and \((\epsilon_n)_{n \in \mathbb{N}}\) be a monotone decreasing sequence of positive real numbers satisfying \(\sum_{n=1}^{\infty} \epsilon_n < \epsilon\). We recall the relations \(\alpha_{n+1} = \alpha_n + \frac{1}{k_n \cdot q_n}\) and \(h_n \circ R_{\alpha_n} = R_{\alpha_n} \circ h_n\). Hereby, we observe for any \(m \in \mathbb{N}\)

\[
H_n \circ R_{\alpha_{n+1}} \circ H_n^{-1} = H_n \circ h_n \circ R_{\alpha_n} \circ R_{\alpha_{n+1}^{-1} \circ h_n^{-1} \circ H_n^{-1}} = H_n \circ h_n \circ R_{\alpha_n} \circ h_n \circ R_{\alpha_{n+1}^{-1} \circ h_n^{-1} \circ H_n^{-1}}.
\]

Since the construction of the conjugation map \(h_n\) was independent of the number \(k_n\), we can obtain

\[
\rho \left(f_n - f_n \right) = \rho \left(H_n \circ h_n \circ R_{\alpha_n} \circ H_n^{-1} - H_n \circ h_n \circ R_{\alpha_n} \circ h_n \circ R_{\alpha_{n+1}^{-1} \circ h_n^{-1} \circ H_n^{-1}} \right) < \epsilon_n
\]

as well as for every \(m \leq q_n\)

\[
\rho \left(f_n^m - f_n^m \right) = \rho \left(H_n \circ h_n \circ R_{\alpha_n} \circ h_n \circ R_{\alpha_{n+1}^{-1} \circ h_n^{-1} \circ H_n^{-1}} < \frac{1}{2m}
\]

by choosing \(k_n \in \mathbb{N}\) large enough under the additional conditions

\begin{equation}
\tag{13}
k_n > 40n^2 \cdot l_n^m
\end{equation}

and

\begin{equation}
\tag{14}
\ln(q_{n+1}) = \ln(k_n \cdot l_n \cdot q_n) > \|DH_n\|_0.
\end{equation}
Lemma 7.1. We show that the limit \(f \in \text{Diff}^\omega_\rho (\mathbb{T}^m, \mu) \) is a complete space, we obtain convergence \(\lim_{n \to \infty} f_n = f \). For it we put\(d_0 (f^m, f_n^m) \leq \sum_{k=n+1}^{\infty} d_0 (f_{k-1}^m, f_k^m) < \sum_{k=n+1}^{\infty} \epsilon_k \).

By the exact positioning of the partition elements and Remark 3.7 every occurring conjugation map is applied on a domain, where the associated step function \(s_{\beta,N,\epsilon,\delta} \) satisfies \(s_{\beta,N,\epsilon,\delta} < \epsilon \).

By construction of the sequence \((m_n)_{n \in \mathbb{N}}\), we obtain convergence \(\lim_{n \to \infty} f_n = f \). Since \(\text{Diff}^\omega_\rho (\mathbb{T}^m, \mu) \) is a complete space, we obtain convergence \(\lim_{n \to \infty} f_n = f \). Hence, the condition \(d_0 (f^m, f_n^m) < \frac{1}{2^n} \) from Proposition 5.6 is satisfied as well. Then we can apply the deduced criterion for weak mixing and conclude that \(f \) is weak mixing.

7 Construction of the \(f \)-invariant measurable Riemannian metric

In the following we construct the \(f \)-invariant measurable Riemannian metric. This construction parallels the approach in [GKa00], section 4.8. For it we put \(\omega_0 = (H_n^{-1})^\ast \omega_0 \), where \(\omega_0 \) is the standard Riemannian metric on \(\mathbb{T}^m \). Each \(\omega_n \) is a smooth Riemannian metric because it is the pullback of a smooth metric via a \(\text{Diff}^\omega_\rho (\mathbb{T}^m, \mu) \)-diffeomorphism. Since \(R_{\alpha_n + 1}^\ast \omega_0 = \omega_0 \) the metric \(\omega_n \) is \(f_n \)-invariant:

\[
R_{\alpha_n + 1}^\ast (H_n \circ R_{\alpha_n + 1} \circ H_n^{-1})^\ast \omega_0 = (H_n^{-1})^\ast (H_n^{-1})^\ast \omega_0 = (H_n^{-1})^\ast R_{\alpha_n + 1}^\ast H_n^\ast (H_n^{-1})^\ast \omega_0 = (H_n^{-1})^\ast R_{\alpha_n + 1}^\ast \omega_0 = (H_n^{-1})^\ast \omega_0 = \omega_n.
\]

With the preceding Lemmas we show that the limit \(\omega_\infty := \lim_{n \to \infty} \omega_n \) exists \(\mu \)-almost everywhere and is the aimed \(f \)-invariant Riemannian metric.

Lemma 7.1. On any partition element \(I_n \in \zeta_n \) we have \(\text{dev}_{I_n} (h_n) < \frac{\delta_n}{12} \).

Proof. First of all, we observe for a vector \(\tilde{v} = (v_1, ..., v_m) \) with \(\|v\| = 1 \) and for maps of the form \(J (x_1, ..., x_m) = (x_1, ..., x_{d-1}, x_d + s(x_j), x_{d+1}, ..., x_m) \) with \(\sup_{x \in B} |s'(x)| < \epsilon < 1 \):

\[
\|DJ (\tilde{v})\| \leq \sqrt{1 + 2 \epsilon^2 |v_d|} \leq 1 + \frac{1}{2} (2\epsilon + \epsilon^2) < 1 + 2\epsilon.
\]

Then we have \(\log \|DJ (\tilde{v})\| < 2\epsilon \).

By the exact positioning of the partition elements and Remark 3.7 every occurring conjugation map is applied on a domain, where the associated step function \(s_{\beta,N,\epsilon,\delta} \) satisfies \(\leq \epsilon \).

With the aid of Remark 2.3 and the above observations we obtain

\[
\text{dev}_{I_n} (h_n) \leq \text{dev}_{\phi_n} (I_n) (g_n) + \text{dev}_{I_n} (\phi_n) \leq 2 \cdot [mg_n^2] \cdot \epsilon_n + 3 \cdot (m - 1) \cdot 2\epsilon_n.
\]

By our choice of \(\epsilon_n \) in equation 3 we proved the claim.

Lemma 7.2. The sequence \((\omega_n)_{n \in \mathbb{N}}\) converges \(\mu \)-a.e. to a limit \(\omega_\infty \).
Proof. On the union of the partition elements of ζ_n we conclude by Lemma 7.1
\[d(\omega_n, \omega_{n-1}) = d\left((\tilde{h}_n^{-1} \circ H_{n-1}^{-1})^* \omega_0, (H_{n-1}^{-1})^* \omega_0 \right) \leq \|H_{n-1}^*\| \cdot d\left((\tilde{h}_n^{-1})^* \omega_0, \omega_0 \right) \]
\[\leq \|DH_{n-1}\|_0^2 \cdot \frac{\delta_n}{\epsilon} < \delta_n. \]
Since the elements of the partition ζ_n cover \mathbb{T}^m except a set of measure at most $\frac{1}{n^2}$ by Remark 3.5 for every $n \geq 3$, this calculation shows $d(\omega_{N+k}, \omega_{N-1}) \leq \sum_{n=N}^{N+k} d(\omega_n, \omega_{n-1}) < \sum_{n=N}^{N+k} \delta_n$ on a set of measure at least $1 - \sum_{n=N}^{N+k} \frac{1}{n^2} \geq 1 - \sum_{n=N}^{\infty} \frac{1}{n^2}$. As this measure approaches 1 for $N \to \infty$, the sequence $(\omega_n)_{n \in \mathbb{N}}$ converges on a set of full measure. \hfill \square

Lemma 7.3. The limit ω_∞ is a measurable Riemannian metric.

Proof. The limit ω_∞ is a measurable map because it is the pointwise limit of the smooth metrics ω_n, which in particular are measurable. By the same reasoning $\omega_\infty|_p$ is symmetric for μ-almost every $p \in M$. Furthermore, ω_n is positive definite for every $n \in \mathbb{N}$ and ω_∞ is $\sum_{k=n}^{\infty} \delta_k$-close to ω_{n-1} on $T_1 M \otimes T_1 M$ minus a set of measure at most $\sum_{k=n}^{\infty} \frac{1}{k^2}$. By choosing δ_k, $k \geq n$, small enough (depending on ω_{n-1}),

(A) which can be satisfied by choosing l_n large enough,

we can guarantee that ω_∞ is positive definite on $T_1 M \otimes T_1 M$ minus a set of measure at most $\sum_{k=n}^{\infty} \frac{1}{k^2}$. Since this is true for every $n \in \mathbb{N}$, ω_∞ is positive definite on a set of full measure. \hfill \square

Remark 7.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example [Haa55], §21, Theorem A): Let (N, d) denote a separable metric space. Given a sequence $(\varphi_n)_{n \in \mathbb{N}}$ of N-valued measurable functions on a measure space (X, Σ, μ) and a measurable subset $A \subseteq X$, $\mu(A) < \infty$, such that $(\varphi_n)_{n \in \mathbb{N}}$ converges μ-a.e. on A to a limit function φ. Then for every $\varepsilon > 0$ there exists a measurable subset $B \subset A$ such that $\mu(B) < \varepsilon$ and $(\varphi_n)_{n \in \mathbb{N}}$ converges to φ uniformly on $A \setminus B$.

Lemma 7.5. ω_∞ is f-invariant, i.e. $f^* \omega_\infty = \omega_\infty$ μ-a.e..

Proof. By Lemma 7.2 the sequence $(\omega_n)_{n \in \mathbb{N}}$ converges in the C^∞-topology pointwise almost everywhere. Hence, we obtain using Egoroff’s theorem: For every $\delta > 0$ there is a set $C_\delta \subseteq M$ such that $\mu(M \setminus C_\delta) < \delta$ and the convergence $\omega_n \to \omega_\infty$ is uniform on C_δ. The function f^* was constructed as the limit of the sequence $(f_n)_{n \in \mathbb{N}}$ in the $\Diff^\omega_p (\mathbb{T}^m, \mu)$-topology. Thus, $\tilde{f}_n := f_n^{-1} \circ f \to id$ in the $\Diff^\omega_p (\mathbb{T}^m, \mu)$-topology. Since \mathbb{T}^m is compact, this convergence is uniform, too.

Furthermore, the smoothness of f implies $f^* \omega_\infty = f^* \lim_{n \to \infty} \omega_n = \lim_{n \to \infty} f^* \omega_n$. Therewith we compute on C_δ: $f^* \omega_\infty = \lim_{n \to \infty} \left((f_n \tilde{f}_n)^* \omega_n \right) = \lim_{n \to \infty} \left(\tilde{f}_n^* f_n^* \omega_n \right) = \lim_{n \to \infty} \tilde{f}_n^* \omega_n = \omega_\infty$, where we used the uniform convergence on C_δ in the last step. As this holds on every set C_δ with $\delta > 0$, it also holds on the set $\bigcup_{\delta > 0} C_\delta$. This is a set of full measure and, therefore, the claim follows. \hfill \square

Hence, the aimed f-invariant measurable Riemannian metric ω_∞ is constructed. Since f is also weak mixing by Remark 6.1 the main theorem is proven.
REFERENCES

References

[GKu15] R. Gunesch and P. Kunde: Weak mixing diffeomorphisms preserving a measurable Riemannian metric in $\mathcal{A}_\alpha (M)$ for arbitrary Liouvillean number α. In Preparation.

[K1] P. Kunde: Weak mixing diffeomorphism with ergodic derivative extension in $\mathcal{A}_\alpha (M)$ for arbitrary Liouvillean number α. In Preparation.
