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Abstract

We study the basic height conjecture for points on curves defined over number fields
and show: On any algebraic curve defined over a number field the set of algebraic
points contains an unrestricted subset of infinite cardinality such that for all of its
points their canonical height is bounded in terms of a small power of their root
discriminant. In addition, if we assume GRH, then the upper bound is, as it is
conjectured, linear in the logarithm of the root discriminant.

1 Introduction

Let X be a smooth projective curve defined over a number field. Then we have the Arakelov
height function with respect to the metrized canonical bundle

htω : X(Q) −→ R,

whose definition will be given in the main text below, and the logarithmic root discriminant

disc : X(Q) −→ R.

For the later map we associate to a point P ∈ X(Q) the number field k(P ) and we set
disc(P ) = log(∆k(P )). Here ∆K = |DK/Q|1/[K:Q] denotes the root discriminant of a number
field K. The above two maps are conjecturally related as follows.

1.1. Conjecture. Let X be a smooth projective curve defined over a number field. Let
ε > 0, then there exists a constant C(X, ε) such that for P varying over all algebraic points
of X we have

htω(P ) ≤ (1 + ε) disc(P ) + C(X, ε).
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This conjectural height inequality is special case of Vojta’s conjectures [La] and also refered
to as effective Mordell theorem [MB]. We remark that this conjecture is equivalent to a
uniform abc-conjecture for all number fields [Fr]. For a long list describing the relations of
the abc conjecture to other conjectures in arithmetic geometry and analytic number theory
we refer to [Go] and [Ni].

A subset V ⊆ X(Q) is called unrestricted if for all d, r > 0 the cardinality of the set
Vd,r = {P ∈ V | [k(P ) : Q] ≥ d, disc(P ) ≥ r} is infinite. The purpose of this note is to
show the following theorem.

1.2. Theorem. Let X be a smooth projective curve of genus g ≥ 2 defined over a number
field. Let ε, δ > 0, then there exists an unrestricted subset V ⊆ X(Q) and a constant
C(X, ε, δ,V) such that for all P ∈ V we have

htω(P ) ≤ ε exp(δ disc(P )) + C(X, ε, δ,V). (1.2.1)

If in addition the Dirichlet series L(χD, s) for the characters
(

D
·

)
, where D is a negative

prime number, have no zeros in a ball of radius 1/4 around 0, then we have for all P ∈ V

htω(P ) ≤ ε disc(P ) + C(X, ε,V). (1.2.2)

Finally we like to mention that our results only hold for an infinite subset of X(Q) and the
method of proof seems not to be general enough to cover all algebraic points simultaneously.

2 Heights

The height of an algebraic point P on a smooth projective curve defined over a number
field K can be defined by means of Arakelov theory as follows.

Let π : X → SpecOK be a regular model for X over the ring of integers OK of K, i.e.
X is a projective, regular scheme flat over SpecOK . In this note a hermitian line bundle
L = (L, ‖ · ‖) on X is a line bundle on X together with a continuous hermitian metric
on the induced complex line bundle L∞ over the complex manifold X∞ =

∏
σ:K→CXσ(C).

A particular hermitian line bundle is the canonical bundle equipped with the Arakelov
metric. We denoted this distinguished hermitian line bundle by ω, see e.g. [La].

In the sequel we also allow that the metric associated with L has logarithmic singularities
at a finite set S of algebraic points on X (Q) of the following type: near a singular point
P any section l of L has an expansion in a local coordinate t

‖l‖(t) = |t|ordP (l)φ(t)(− log |t|)α,

where φ(t) is a continuous non-vanishing function and α ∈ R. If α > 0 for all singular
points P , then the metric is called a positive logarithmically singular metric.
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Let P be an algebraic point on X and L be a hermitian line bundle. After possibly
replacing K by a finite extension, we may assume that the algebraic point P , S and X are
all defined over K. Since the arithmetic surface X is proper, we have X (K) = X (OK).
Therefore the Zariski closure P of P in X determines a section sP : SpecOK → X . With
the above notation we define the height of a point P ∈ X(K) \ S with respect to L by

htL(P ) =
1

[K : Q]

(
log #(s∗PL/(s∗P l))−

∑
σ:K→C

log ‖l‖(P σ)
)
,

here l is a regular section of L which is non zero at P . Observe the height does not depend
on the choice of l nor of K. If we denote by p a local equation for P , then we have an
equality

log #(s∗PL/(s∗P l)) =
∑
x∈X

log #(OX ,x/(p, l))

The above quantity is also denoted by (P , div(l))fin and there are only finitely many x ∈ X
that give non zero contribution to (P , div(l))fin.

We will need the following basic facts on heights.

2.1. Proposition. Let L, M be hermitian line bundles on X . Assume deg(L) =
deg(M) > 0. If the metric on L is continuous and the metric on M is positive loga-
rithmically singular metric, then for all ε > 0 we can find a constant C(ε,X ,L,M) such
that

htL(P ) ≤ (1 + ε) htM(P ) + C(ε,X ,L,M)

Proof. It is well known (see e.g. [Si], Proposition 3.6) that in the case where both metrics
are continuous we find a constant C(ε,X ,L,M) such that for all ε > 0

htL(P ) ≤ (1 + ε) htM(P ) + C(ε,X ,L,M). (2.1.1)

For simplicity of the argument we assume that the metric ‖ · ‖ on M has only Q ∈ X(Q)
as singular point. Let 1Q be the canonical section of O(Q). Then we can find continuous
hermitian metrics ‖ · ‖′ on M and ‖ · ‖ on O(Q) such that for all P ∈ X(C) \ {Q} and all
sections m of M

‖m‖(P ) = ‖m‖′(P ) · (− log ‖1Q‖(P ))α.

Let Q be the Zariski closure of Q. Then, since α > 0, we obtain

htM(P ) = htM′(P )− α log(− log ‖1Q‖(P ))

≥ htM′(P )− α log(− log ‖1Q‖(P ) + (P ,Q)fin)

= htM′(P )− α log htO(Q)(P )

≥ (1− ε′) htL(P )− αε′
1− ε′

deg(L)
htL(P )− C ′(X , ε′,L,M)
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For the last inequality we used (2.1.1) twice. If we take ε such that 1/(1 + ε) = 1− ε′(1 +
α(1− ε′)/ deg(L)) we derive the claim. �

2.2. Proposition. Let f : Y → X be a proper morphism of arithmetic surfaces, then we
have

htf∗L(P ) = htL(f(P ))

for any logarithmically singular hermitian line bundle L on X and P not in the singular
locus of the logarithmically singular metric on L.

Proof. See e.g. [BoGS], Formula (3.2.1). �

3 Arithmetic properties of Heegner points

Due to the modular description the points on the modular curve X(1) are well understood.
Recall that X(1)(C) = Γ(1) \ H ∪ {∞} and that X(1) is isomorphic to P1. The regular
model of X(1) will be denoted by X (1). This arithmetic surface is canonically isomorphic
to P1

Z. On X (1) we have the line bundle of modular forms M12. The natural metric on
this line bundle is the Petersson metric, here we use the normalization as given in [Kü],
Definition 4.8. This metric gives rise to the positive logarithmically singular hermitian line
bundle M12 (see e.g. [Kü], Proposition 4.9 and 4.12). For any point P ∈ X(1)(K) \ {∞}
we have a well-defined height with respect to M12. It is called the modular height.

3.1. Heegner points. Let D be a negative fundamental discriminant and K = Q(
√

D).
We briefly recall some properties of Heegner divisors. Every ideal class [a] of K defines
a unique point Pa on Γ(1) \ H by associating with a fractional ideal a = Za + Zb with
oriented (i.e. Im(bā) > 0) Z-basis a, b the point ρa = b/a ∈ H. We call Pa the Heegner
point to a and sometimes write [ρa] instead of Pa.

The Heegner divisor H(D) on Γ(1)\H consists of the sum of the Pa, where a runs through
all ideal classes of K, counted with multiplicity 2/w, where w is the number of units in K.
The cardinality of H(D) is equal to the class number h of K, its degree is 2h(D)/w.

3.2. Proposition. Let f : X → X(1) be a morphism of algebraic curves that is defined
over the field over which X is defined. Let P ∈ X(Q) be a point such that f(P ) is contained
in a Heegner divisor H(D) with prime discriminant D, then we have

disc(P ) ≥ 1

2
log |D| − 55

2
.

Proof. The composition formula for the discriminant implies that for all morphisms
f : X → X(1) and points P ∈ X(Q) we have the inequality

disc(P ) ≥ disc(f(P )).
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Thus it suffices to bound the discriminant of a Heegner point Pa = f(P ). We consider the
following diagram of field extensions

H = Q(
√

D, j(ρa))

F = Q(j(ρa))

llllllllllllll

K = Q(
√

D)

RRRRRRRRRRRRR

Q

SSSSSSSSSSSSSSSSSS

kkkkkkkkkkkkkkkkk

By the theory of complex multiplication we have h(D) = [H : K] and DH|Q = Dh(D).
From [Gr], Lemma 12.1.2 we deduce NmF |Q(DH|F ) = D. The composition formula DH|Q =
D2

F |Q · NmF |Q(DH|F ) gives rise to the equality

disc(Pa) =
1

h(D)
log |DF |Q| =

(
1

2
− 1

2h(D)

)
log |D|.

The class number of an imaginary quadratic number field with prime discriminant satisfies
h(D) > 1/55 log |D| (see e.g. [Oe]). Thus we have

disc(Pa) =

(
1

2
− 1

2h(D)

)
log |D| ≥ 1

2
log |D| − 55

2
(3.2.1)

�

3.3. Proposition. Let Pa ∈ H(D) be a Heegner point, then its modular height is given by

htM12
(Pa) = −6

(
L′(χD, 0)

L(χD, 0)
+

1

2
log |D|

)
, (3.3.1)

here L(χD, s) is the Dirichlet L-function for the character
(

D
·

)
.

Proof. Recall ∆(τ) = q24
∏∞

n=1(1− q)n, where q = e2πiτ with τ ∈ H, is a section of M12,
whose divisor equals the unique cusp ∞ of X (1). Its Petersson norm is determined by the
formula

‖∆(τ)‖Pet = |∆(τ)|(4π Im(τ))6.

Therefore the modular height of a Heegner point is given by

htM12
(Pa) =

1

[K : Q]

(Pa,∞)fin −
∑

ρa∈H(D)

log ‖∆(ρa)‖Pet


here for each embedding σ : F = Q(j(ρa)) → Q the point ρa is a lift of P σ

a (C) ∈ Γ(1) \H
to H. We now recall the well known Kronecker limit formula. If

E(τ, s) =
1

2

∑
γ∈Γ∞\Γ1

(Im(γτ))s
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is the real analytic Eisenstein series for Γ(1), then the logarithm of the Petersson norm of
the Delta function is given by

log
(
‖∆(τ)‖2

Pet

)
= −4π lim

s→1

(
E(τ, s)− Γ(1/2)Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)

)
+ 12 log(4π).

We also point to the identity

∑
ρa∈H(D)

E(ρa, s) =
w

2

∣∣∣∣D4
∣∣∣∣s/2

ζK(s)

ζ(2s)
,

where ζK(s) = ζ(s)L(χD, s) denotes the Dedekind zeta function of K (see [GZ] p. 210). In
[BK], p. 1726, we derived from this the formulae∑

ρa∈H(D)

− log
(
|∆(ρa)|2(4πImρa)

12
)

= 4π lim
s→1

 ∑
ρa∈H(D)

E(ρa, s)− h
Γ(1/2)Γ(s− 1/2)ζ(2s− 1)

Γ(s)ζ(2s)

+ 12h(D) log(4π)

= −12h(D)

(
L′(χD, 0)

L(χD, 0)
+

1

2
log |D|

)
.

Since j(ρa) is an algebraic integer we have (Pa,∞)fin = 0. Thus we derived the claim. �

3.4. Remark. Recall that X (1) ∼= P1
Z, M12

∼= O(1) and that the line bundle O(1)
equipped with a particular metric gives rise to the naive height htP1 . This height is for a
Heegner point Pa ∈ X(1)(K) given by

htP1(Pa) =
1

[K : Q]

(
(Pa,∞)fin −

∑
ρa

log max(1, j(ρa))

)

= 6

(
L′(χD, 1)

L(χD, 1)
+

1

2
log |D|

)(
1 + O

(
log log |D|

log |D|

))−1

.

Indeed, since j(ρa) is an algebraic integer we have (Pa,∞)fin = 0. Now the claim follows
immediately from [GS] by combing their equation (7) with their Theorem 3.

3.5. Proposition. Let Pa ∈ H(D) be a Heegner Point with prime discriminant.

(i) For all δ > 0 there exists a constant S(δ) such that

htM12
(Pa) ≤ S(δ) · exp (δ disc(Pa)) . (3.5.1)
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(ii) If the Dirichlet L-series L(χD, s) have no zero in the ball of radius 1/4 around 0,
then there exists constants a and b such that the modular height of a Heegner point of
discriminant D satisfies

htM12
(Pa) ≤ a disc(Pa) + b. (3.5.2)

(iii) Assuming the generalized Riemann hypothesis (GRH) for the Dirichlet L-series L(χD, s)
in question we have

htM12
(Pa) = 6 disc(Pa) + o(disc(Pa)). (3.5.3)

Proof. (i) and (ii). Let EOK
be a elliptic curve with complex multiplication by OK , then

the Faltings height of EOK
equals twelve times the modular height of its modular point

POK
, see e.g. [Co] p.362 and p. 365. By means of the inequality (3.2.1) we derive that (i)

is a reformulation of the corresponding formula in the remark on page 365 in [Co] and the
claim (ii) is a reformulation of Theorem 6 (ii) in [Co].

(iii) Using the functional equation for L(χD, s) we formulate the right hand side of (3.3.1)
as a special value at s = 1

−
(

L′(χD, 0)

L(χD, 0)
+

1

2
log |D|

)
=

(
L′(χD, 1)

L(χD, 1)
+

1

2
log |D| − log(2πeγ)

)
,

where γ is the Euler constant. Assuming the GRH we have

L′(χD, 1)

L(χD, 1)
= O(log log |D|),

here the implied constant is uniform in D (see e.g. [GS], section 3.1) which yields

htM12
(Pa) = 6

(
1

2
log |D|+ O(log log |D|)

)
(3.5.4)

Since O(log log |D|) is also of order o(log |D|), we derive by means of (3.2.1) the claim. �

4 Main result

4.1. Definition. Let X be curve defined over a number field and let f be a non constant
function in the function field of X. We consider f as a morphism f : X → P1 and identify
P1 with the modular curve X(1). Then we define

V(X, f) = {P ∈ X(Q) | f(P ) is a Heegner point with prime discriminant }.
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4.2. Proposition. The subset V(X, f) ⊆ X(Q) is unrestricted.

Proof. The set of Heegner points with prime discriminant on X(1) is, as we have seen
already in the proof of Proposition 3.2, unrestricted. The composition formula for the
discriminant implies that for all morphisms f : X → X(1) and points P ∈ X(Q) we have
the inequality

disc(f(P )) ≤ disc(P ).

Therefore the set V(X, f) is also unrestricted. �

4.3. Theorem. Let X be a curve of genus g ≥ 2 defined over a number field. Let f be a
non constant function in the function field of X and let ε, δ > 0.

(i) There exists constants S(δ) and C(X, ε,V(X, f)) such all P ∈ V(X, f) satisfy

htω(P ) ≤ (1 + ε)
S(δ)(2g − 2)

deg(f)
exp (δ disc(P )) + C(X, ε,V(X, f)). (4.3.1)

(ii) Assume that htM12
(Pa) ≤ a disc(Pa) + b for all Heegner points Pa with prime discrim-

inant D, then for all P ∈ V(X, f) we have

htω(P ) ≤ (1 + ε)
a(2g − 2)

deg(f)
disc(P ) + C(X, ε,V(X, f)). (4.3.2)

Proof. Let f : X → X (1) be an extension of the morphism f : X → X(1) given by

f . The degrees of the line bundles ω⊗ deg(f) and (f ∗M12)
⊗(2g−2) are equal and positive.

We endow M12 with with the Petersson metric and by pull-back we obtain the positive
logarithmically singular line bundle f ∗M12 on X . Then by Proposition 2.1 and Proposition
2.2 we get for all P ∈ X(Q) \ {f−1(∞)}

htω(P ) ≤ (1 + ε′)
2g − 2

deg(f)
htM12

(f(P )) + C ′(X, ε′,V(X, f));

here we wrote C ′(X, ε′,V(X, f)) instead of C ′(ε′,X , ω, f ∗M12). If P ∈ V(X, f) ⊆ X(Q)
then f(P ) is a Heegner point with prime discriminant. Thus (4.3.1) follows immediately
from (3.5.1). Finally (4.3.2) is an easy consequence of the assumed bound for the modular
height of f(P ). �

4.4. Remark. (i) In Theorem 4.3 we can choose f with arbitrary large degree. If we let
deg(f) ≥ (1 + ε) · S(δ) · (2g − 2)/ε we derive formula (1.2.1) of Theorem 1.2. If we let
deg(f) ≥ (1 + ε) · a · (2g − 2)/ε we obtain formula (1.2.2).

(ii) We note that because of [Fr] the exponential height inequality (1.2.1) should somehow
be related to the exponential abc-inequality [SY], [Su]. We remark also that (1.2.2) could be
seen as a converse to a theorem of Granville and Stark [GS] saying that the abc-conjecture
implies that there are no Siegel zeros.
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183 (1990), 37–58.

[Ni] Nitaji, Abderrahmane: The abc conjecture home page.
http://www.math.unicaen.fr/˜nitaj/abc.html
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