Theorem (Rankin-Selberg unfolding)

Let f(7) = X0 ang" € Sgand g(7) = Yor_ bm@™ € Mj. Then, if k — | > 4 we have

for the Petersson scalarproduct

(k—2)! & anby
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f(7),9(1)Gri(7)) =

Proof: By definition we have
0.9 = [ FrG T
F

Because of above notation we get for the integrand
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We apply this identity to the integral
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Unfolding the domain of integration, i.e. interchanging the integral and the sum, leads to

o 1 0

d A —am
f f(z+y)gle +iy)da yky—Qy = f Z anbpe ™y =2 dy
00 n=1

Using the "holomorphic projection principle" the formula also holds for
f(r) =3 anq™ € Syand g(7) = Zi:o bmq™ € Mj_o, namely we have

(1), 9(r)G5 (7)) =

nl

Proposition

Let f(7) = D", ang™ be a Hecke Eigenform of weight k. Then we have

i anop—1(n)  L(f,8)L(f,s —k+1)
ns B ¢(25 +2)

n=1

Proof: Use the Euler product & a,, € R ...
For example we get

L L(A 1) L(AY)
¢(6)

this will be used for the Theorem of Eichler-Shimura-Manin.

(A, G4Gs) =

Modular forms and their periods

Outlock
Periods are countable set of complex numbers

Q < Q < { periods } < C,

which still obey many arithmetic properties. We will show that the finitely many periods given by
the special values of the L-series L( f, s) attached to a modular f contains as much information

as the infinite set {a,, } nel given by its Fourier coefficients.

Definition (n-th period)
Let f € Sk, then its n-th period is defined by




Proposition

Let f € Sk, then we have
r(f) = "FIR(f,n + 1),

where R(f,s) = (2m)*T'(s)L(f,s) = £R(f,k — s).

Proof: Similar as we have seen before

100 0
Jf(T)TndT = jf(it)(it)"dt = ... =i""R(f, s)|s=n+1.
0 0
O
Definition (slash operator)
Let f : C — € € Maps(C, C). Then we define the slash operator by
|, : Maps(C, C) x SLy(Z) — Maps(C, C)
at +b _ “
(. (28)) = 1 {E55) e + 7% = Al (2.
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It f € My, then f|,y = f. Ex X lzﬂfr: 4% (X—(-/l)e
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efinton Xl T e
Essei Vi = {f(z) € C[X]| deg f(z) < k —2}. (’-:(p,‘)
( 1o fA-~1
Lemma - ©A

The group SLo(Z) operates on V}, via |271c'

Proof: Consider f(x) € C[x] by f(z) — (x — f(x)) as an element of Maps(C, C).
Clearly is |271c a linear map, thus it remains to show forall 0 < [ < k — 2:

ar +b
cr+d

l
f”l}H(‘é b) = (cz + a2 ( ) = (cz 4+ d)* "2 Y az + b)' € V.

0.,

Definition (Period polynomials
Let f € Sk, then its period polynomial is defined by
io0
_ k—2
(@) = [ 1) - af-2dr
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Remark

@) = 20 (F )t e o

n=0

Proposition
Let f € Sg and v € SLo(Z), then we have
771 (i0)
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Proof: Lety = ( e g). The with the change of variable (7) = u we get
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il @) = [ S0 =02, () dr
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Let G be a group and R be a ring. Then

RG] = { Y, Rlgl}

geG

equipped with addition and multiplication

Z aglg] + 2 bglg] = Z(ag +bg)g]

9geG geG 9eqG
Z aglg] + Z byly'] = Z agby[99']
geG g'eG g9,9'€G

is a ring. We call R[G] the group ring of G with coefficients in R.

Remark
o R[G]isa R-module.
o The action of SLo(Z) via ‘27k on V}, extends to a group ring action of Z[SL2(Z)] on V},

as follows:
For >, 74[g] € Z[SL2(Z)] and p(z) € Vj, we set

IRWATCOEDY T’g(pIQ_kg)(l’)

E’Z:I ,5{32/]

0 -1 1 -1
LetS = (1 0 ) and U = <1 0/ By the above Proposition, we then get for the

period polynomial 7 ¢ associated with a modular form feSk P © 2
rily 1+ S=0 S« 5= §-¢
fla—k - v oL YV ¢
rel, 1+U+U*=0.

Definition (Space of period polynomials)
We define the space of period polynomials by

Wi, = {p(z) € Vi |p|2_k1 +8 = p|2_k1 +U+U? =0}

Remark

If k is clear from the context we simply write p|’y instead of p|2_k’y.

Proposition (trivial Period relations)

For f € Swt2and ri(f) = Séoo F(r)TFdTwith k = 0, ..., w we have the period relations:

0= 1u(7) + (—1)Frus(f)
0-n+0* N (Dt B (070

0<i<k osisw—k
i=0 mod 2 i=k mod 2
k w—k
0= Z (Z rok+i(f) + Z ; ri(f)
1<i<k osisw—k
i=1 mod 2 i#k mod 2

Proof: The first follows by comparing the coefficients of ¢ |2_k1 + .S = 0. For the other we
decompose rf}%kl + U 4 U? = 0 w.rt. to the w-eigenspaces. O

We aim to understand better the map
f — ’f’f.
Via the involution
Vi = Vi
p(z) = p(—x)

induced by  — —x we obtain a decomposition Vj, = V,j @ V), where

Vih = {peVi|p(x) = p(—2)}

Vi ={peVi|pla) = —p(-2)}.

In fact we have also a decomposition -1 0
E=>\oa

Wiy =W @w,

Finally, for f € S} we have the decomposition 7y = 7‘; +7y.



Theorem (Eichler-Shimura)

() Themapr™ : S — W,; is an isomorphism of vector spaces.

+
(i) We have pjf (z) :== 22 — 1€ W, andthemapr™ : S — Wy /Cp,j is an

isomorphism of vector spaces.

We sketch a proof of the weaker claim My, @ Sy =~ W). So that we can avoid the additional
action of € = ( 51 (1)) which give rise to the spitting V' = V' @ V™ into eigenspaces for ¢,

i.e., the space of even polynomials V' and the space of odd polynomials V'~ .

Proposition

Forall £ > 4 we have
dim Wy, = dim My, + dim Sg.

Proof: We set
VS ={peVipl, .S =p}
vU=1{pe V|p|2_kU = p}.
As being an involution Sis diagonalizeable, i.e.,
V =V°@ker(l + 9).

The characteristic polynomials for U € Vj, is (z — 1)(z — w)(z — w?), since U is a root for
X3 — 1. Therefore

Vi =V @ker(U —w-1)@ker(U — w? - 1).
We further need the non-degenerate bilinear form on V}, given by

(X™ X") = {(1)n(kn2)l, fn+tm==%k—2

0, else.

It is straightforward to show that

<p|2_k%q|2_k7> =,

forall v € SLa(Z).

Now we get for all subspaces I = V. the orthogonal decomposition
Vi=F@F*

where

Ft={qeVil[{g.p)=0 YpeF}.
We have V¥ L ker(1 + s), since for p € V;5 with q € ker(1 + s) we have
<p7 q> = <p’2,ks7q|2,ks> = <p7 _q> = _<P7 Q> =0.

Analogously we get

VY Lker(U —w-1)
VY 1L ker(U —w?-1)

We conclude
ker(1+ U +U?) =ker(U —w-1) @ker(U —w?-1) = (VY)*

and
Wi = (VO n (V) = (V8 + v~

Observe that T’ = ((1) ,11) =U?S. Nowany p € Vks N VkU must therefore be 1-periodic, i.e.
(p|2_kT)(1’) = p(z + 1), and there it must be constant. By assumption we have k > 2 and

therefore the constants are not elements of V%, as otherwise
p(z) = 2" ?p(~1/x) = (p|,_,9)(x)
is not satisfied. Moreover we have
Wi = (V@ V)t
All these consideration then prove the first step of the proof:
dim Wy, = dim(Vi @ V)" = dim V — dim(V;%) — dim(V).
We now calculate these dimensions:

dim V;, = dim{p € C[z]| degp <k —2} =k — 1.



The polynomials s,,(z) = (z —i)"(z +i)* 27", n = 0,..., k — 2 give rise to a basis of

eigenvectors in Vj, with eigenvalues (—1)™3™~2 w.r.t. the action of S. Hence we get

dimVy® = #{n=0,... .k
=#{n=0,...,k

k—2
=1+2{T J

The polynomials U, (z) = (z + w)™(z + w)¥=27" n = 0,...,2 — k give rise to a basis of
eigenvectors in V}, with eigenvalues wk=2+7 it the action of U. In a similar way we get

—2| (-2 =1}
—2[2n=k—2 mod 4}

-2
dikaU:#{n:O,...,kfﬂwk’“":1}:1+2V€TJ.

Finally we get for k > 4 the formula

a1 (122[52]) - (2|52

_ {2[{;“1, falls k # 2 mod 12

2 [T’EJ —1, fallsk=2 mod 12

Comparing this with the formula for dim (M},) resp. for dim (.S, ) the claim follow. O

S = ( O -1
Theorem (Haberland) — (34 Ao

Letk > 4, and let f, g € Sk. Then their Petersson scalar product satisfies 2 x( )
(5,9 = e (il T =T, 75
97 = 6(20)k1 TFlo—k 1Ty

S ) (_nm(’f;?)(;)rn_g_mmrm(g).

O<m<n<k—2

m#n mod 2 M n
(] y

bl

Moyt x 4 tiaN
Proof: Either proved by a long calculation or by using group cohomolozgm et LM ”65 [l

Corollary

+
The morphisms 7+ : S, — Wi /Cpk andr~ : S — W, are injektive.

This Corollary will imply the Theorem of Eichler-Shimura:

Proof: Let f € S, with f < ker(r~) u ker(r*). By the theorem of Haberland we get
<f, f> = (), since by assumption all periods are 0. Since the Petersson scalar product is
non-degenerate, we must have f = (. We conclude the injectivity of 7~ and 7, since

pi &7 (Sk). O

Theorem (Kohnen-Zagier)
For0 < a < k/2let

EaEk—a ifa # 2
Faj—a = E}Ey_3) = BsEy_z — 25
Thot (B3 Ex—2) = EsEp_o — 5 E)_, else,

a

then the set { By k—a Jo<a<k/2 SPans M.

Proof: We have Ej, = E ;. Let f € S be a Hecke eigenform, then with some non-zero
constants r, k', which only depend on k, we have by Rankin’s formula for all even 0 < a < k/

<f7 Ea,kfa> = ‘k';L(fv k— ]-)L(f7 a) zw.f)rafl(f)

GIA./na =% 0
We observe, that since L(f, s) is for s = k — 1 given by %1 Euler product, we have

rk,g(f) # 0. Thus if f is orthogonal to all such Eq k—aq, all linear equations in the odd periods

2

of f have to vanish. Thus 7"]7 = 0 and by the theorem of Eichler-Shimura we must have f = 0.

O

Theorem (Fukuhara)
Let dr, = dim S}, , then a basis for M}, is given by

{Ek} V] {E4iEk—4i | =1, ,dk} ifk=0 (mod 4)
{Ek U {E4i+2E]€_4¢_2 | 1 =1, ,dk} itk =2 (mod 4)

For example for M3g, we have the basis

{Es6, E4Esy, EgEag, E19Fay}.

Tasaja !, ok W ol Boa

s o clere, pPua fiol p{ao/;p_ %/Oﬂ‘?"‘h.




Theorem (Eichler, Shimura, Manin)

Let f = > a,(f)g"™ € Sk be a Hecke eigenform. Then there exist to non-zero complex
numbers wf+ € 1R and w; € R, such that

u r—i € Q(az(f),a3(f), - )[X] = Q(NHI[X]

—
Wy Wi

Moreover, one may choose w;{ and w; such that

wiwy = i(f, f).

Proof: This combines the trivial Period relations plus relations obtain by Rankin’s method for
calulating < f, EaEk—a> . O

We make explicit the above results for
o0
fF=A(r) = qH(l — ¢ =g —24¢% +252¢° + --- € Sy,
n=1

The trivial period relations imply

L(A,2) = L(A, 10)
48L(A,4) = 48L(A,9) = 25L(A, 10)
12L(A, 6) = 5L(A, 10)

L(A,1) = L(A,11)

L(A,3) = L(A,9)
14L(A,5) = 14L(A,7) = 9L(A, 9)

This suffices to show
ra(X) = gL(A, 11)(4(X? + X) — 25(X7 + X?) + 42X°).

Using Rankin-Selberg unfolding gives

A, 8) = ERESZEN) = (A GrGo) = LA DL

_ 15
for 3 = 5z57-

With another modular form g = F»(Gg, G2) € My, where F;(+, *) denotes the second
Rankin-Cohen bracket, one calculates

45

IB<A5 A> = <A7 g> = _ML(Av 3)L(A7 4)

- _5
for 8 = — 5.
These two additional identities give rise to

1620L(A, 9) = 691L(A, 11).

We conclude
691 36

ri(@) = Sril(A, 11)(@()(10 1) - X2(X2 - 1)3).

For the second claim of the theorem we note

ra(X) =q wa(4(X+X)+...)

36

ri(X) = q+wg(@(X10 + 1) + )

mit
_ _ 5
NS §L(A,10)
1

gl = %iL(A, 11)

and
wrwi = i(A, A).

This implies

. _ 3455 L(A,10)L(A, 11)

q q ™ NN = 1024.

We set for an arbitrary g_ € Q*

51

691

36 1001 LA 1)

+
WA



In particular for g— = 9 we get for example

wx ~ 0,00102991957 ...
wk ~0,001005264371 ... - i.

Remark
write A(T) = >~ 7(n)g", then

converges for Re(s) > 12—2 + 1 = 7 quite quickly. Using this fact one can calculate
wa ~ L(A,10) and wx ~ L(A, 11) very fast and very precise. Thus this also holds for
(AAY = wzwg. Conversely, numerical calculations of the integral

_ . . 12dgvdy
(A, A = l OIS

are far away of producing such precise approximations in a reasonable time.

Definition
Let
M, ={(2%) € My(Z)|ad — bc = n}
and
M, = P Zn.
YEM.,

then an operation of M, on V}, is defined by the linear extension of

pla(24) = (et f2p (250

Theorem (Manin, Zagier)

For n € IN we define Tn € M,, by
To = (24),

where in the sum only those (¢ ) € M,,contribute, for that a > |c|, d > |b| and bc < 0, or if
b=0,then —a < 2c < a,orifc = 0, then —d < 2b < d.
The we have

TnW,:' c Wk+ und Tan_ c W,

for all k,n € IN. Furthermore we have

rr, 1 (X) = Tf!g_an'

i.e. the action of T},,on S}, resp. on M), corresponds to the action of Tn on Wj.

Example
We have
T*10+11+20+20
27\0 2 0 2 0 1 11
Corollary
If f is a Hecke eigenform, then 7 f is an eigenvector for the action of Tn on Wi J

It is instructive to study the action of Tg, T4, TG on rz and r;.

Corollary
Let

0 (0]
f= Zanq"=q+ Z anq"
n=1 n=2
be a Hecke eigenform, then we have
a; = Z (k - 2) Tn(f) (bk727ndn _ bndk727n)'
ab) . 0<n<i—1 \ ro(f)
(c d)ETl n,

2\l y
Ve

Proof: We have ~
ar(X) = rop(X) =g, Ti(X),

in particular this holds for X = 0, which is the claimed formula. O
Exercise:Determine the Ramanujan tau function for 7(2), 7(3), 7(4) and 7(6) by this method.
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