
Theorem (Rankin-Selberg unfolding)

Let fp⌧q “

∞8
n“1

a

n

q

n

P S

k

and gp⌧q “

∞8
m“0

b

m

q

m

P M

l

. Then, if k ´ l • 4 we have
for the Petersson scalarproduct

xfp⌧q, gp⌧qG

k´l

p⌧qy “

pk ´ 2q!

p4⇡q

k´1

8ÿ

n“1

a

n

b

n

n

k´1

.

Proof: By definition we have

xfp⌧q, gp⌧qG

k´l

p⌧qy “

ª

F

fp⌧qgp⌧qG

k

p⌧qy

k

dx d y

y

2

.

Because of above notation we get for the integrand

p2⇡iqk

pk ´ 1q!⇣pkq

fp⌧qgp⌧qG

k´l

p⌧qy

k

“

ÿ
`
a b

c d

˘
P
xp

1 1

0 1

qy

z SL2pZq

pc⌧ ` dq

k

fp⌧qpc⌧ ` dq

l

gp⌧q

y

k

ˇ̌
pc⌧ ` dq

ˇ̌
2k

“

ÿ

�P
xp

1 1

0 1

qy

z SL2pZq
fp�⌧qgp�⌧q Imp�⌧q

k

.
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We apply this identity to the integral

p2⇡iqk

pk ´ 1q!⇣pkq

ª

F

fp⌧qgp⌧qG

k´l

p⌧qy

k

dx d y

y

2

“

ª

F

ÿ

�P
xp

1 1

0 1

qy

z SL2pZq
Imp�⌧q

k

fp�⌧qgp�⌧q

dx d y

y

2

.

Unfolding the domain of integration, i.e. interchanging the integral and the sum, leads to

8ª

0

1ª

0

fpx ` yqgpx ` iyqdxyk
d y

y

2

“

8ª

0

8ÿ

n“1

a

n

b

n

e

´4⇡ny

y

k´2 d y

“

pk ´ 2q!

p4⇡q

k´1

8ÿ

n“1

a

n

b

n

n

k´1

l
Using the "holomorphic projection principle" the formula also holds for
fp⌧q “

∞8
n“1

a

n

q

n

P S

k

and gp⌧q “

∞8
m“0

b

m

q

m

P M

k´2

, namely we have

@
fp⌧q, gp⌧qG

˚
2

p⌧q

D
“

pk ´ 2q!

p4⇡q

k´1

8ÿ

n“1

a

n

b

n

n

k´1

.
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Proposition

Let fp⌧q “

∞8
n“1

a

n

q

n be a Hecke Eigenform of weight k. Then we have

8ÿ

n“1

a

n

�

k´1

pnq

n

s

“

Lpf, sqLpf, s ´ k ` 1q

⇣p2s ` 2q

Proof: Use the Euler product & a

n

P R ... l
For example we get

p�, G

4

G

8

q “ ˚

Lp�, 11qLp�9q

⇣p6q

this will be used for the Theorem of Eichler-Shimura-Manin.
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Modular forms and their periods

Outlock
Periods are countable set of complex numbers

Q Ñ Q Ñ t periods u à C,

which still obey many arithmetic properties. We will show that the finitely many periods given by
the special values of the L-series Lpf, sq attached to a modular f contains as much information
as the infinite set ta

n

u

nPN given by its Fourier coefficients.

Definition (n-th period)
Let f P S

k

, then its n-th period is defined by

r

n

pfq “

i8ª

0

fp⌧q⌧

n d ⌧.
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Proposition
Let f P S

k

, then we have
r

n

pfq “ i

n`1

Rpf, n ` 1q,

where Rpf, sq “ p2⇡q

´s�psqLpf, sq “ ˘Rpf, k ´ sq.

Proof: Similar as we have seen before

i8ª

0

fp⌧q⌧

n d ⌧ “

8ª

0

fpitqpitq

n d t “ . . . “ i

n`1

Rpf, sq

ˇ̌
s“n`1

.

l

74 / 97

Definition (slash operator)

Let f : C Ñ C P MapspC,Cq. Then we define the slash operator by

ˇ̌
k

: MapspC,Cq ˆ SL
2

pZq Ñ MapspC,Cq

`
fp⌧q,

`
a b

c d

˘˘
fiÑ f

ˆ
a⌧ ` b

c⌧ ` d

˙
pc⌧ ` dq

´k

“ f

ˇ̌
k

`
a b

c d

˘
p⌧q.

If f P M

k

, then f
ˇ̌
k

� “ f .

Definition

Es sei V
k

“ tfpxq P CrXs

ˇ̌
deg fpxq § k ´ 2u.

Lemma

The group SL
2

pZq operates on V
k

via
ˇ̌
2´k

.

Proof: Consider fpxq P Crxs by fpxq fiÑ px fiÑ fpxqq as an element of MapspC,Cq.
Clearly is

ˇ̌
2´k

a linear map, thus it remains to show for all 0 § l § k ´ 2:

x

l

ˇ̌
2´k

`
a b

c d

˘
“ pcx ` dq

k´2

ˆ
ax ` b

cx ` d

˙
l

“ pcx ` dq

k´2´l

pax ` bq

l

P V

k

.

l
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Ex :

xelz.si?re-2-ecx+r1eXelz-rTT=n--2-eCx
. ye

F- to? )

Theo 'll

Definition (Period polynomials
Let f P S

k

, then its period polynomial is defined by

r

f

pxq “

i8ª

0

fp⌧qp⌧ ´ xq

k´2 d ⌧

Remark

r

f

pxq “

8ÿ

n“0

p´1q

n

ˆ
k ´ 2

n

˙
r

n

pfqx

k´2´n

P Crxs.

Proposition

Let f P S

k

and � P SL
2

pZq, then we have

´
r

f

ˇ̌
2´k

�

¯
pxq “

�

´1pi8qª

�

´1p0q

fp⌧qpx ´ ⌧q

k´2 d ⌧.

76 / 97

Proof: Let � “

`
a b

c d

˘
. The with the change of variable �p⌧q “ u we get

r

f

ˇ̌
2´k

�pxq “

i8ª

0

fp⌧qpx ´ ⌧q

k´2

ˇ̌
2´k

`
a b

c d

˘
d ⌧

“

i8ª

0

fp⌧qpcx ` dq

k´2

ˆ
ax ` b

cx ` d

´ ⌧

˙
k´2

d ⌧

“

i8ª

0

fp⌧qpc⌧ ` dq

k´2

ˆ
x ´

a⌧ ` b

c⌧ ` d

˙
k´2

d ⌧

“

i8ª

0

fp�p⌧qqpx ´ �p⌧qq

k´2 d �p⌧q

“

�

´1p8qª

�

´1p0q

fpuqpx ´ uqdu.

l
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Let G be a group and R be a ring. Then

RrGs

:
“

! ÿ

gPG
Rrgs

)

equipped with addition and multiplication
ÿ

gPG
a

g

rgs `

ÿ

gPG
b

g

rgs “

ÿ

gPG
pa

g

` b

g

qrgs

ÿ

gPG
a

g

rgs `

ÿ

g

1PG
b

g

1
rg

1
s “

ÿ

g,g

1PG
a

g

b

g

1
rgg

1
s

is a ring. We call RrGs the group ring of G with coefficients in R.

Remark
RrGs is a R-module.

The action of SL
2

pZq via
ˇ̌
2´k

on V
k

extends to a group ring action ofZrSL
2

pZqs on V
k

as follows:
For

∞
r

g

rgs P ZrSL
2

pZqs and ppxq P V

k

, we set

p

ˇ̌
2´k

ÿ
r

g

rgspxq “

ÿ
r

g

pp

ˇ̌
2´k

�qpxq.
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g

Let S “

ˆ
0 ´1
1 0

˙
and U “

ˆ
1 ´1
1 0

˙
. By the above Proposition, we then get for the

period polynomial r
f

associated with a modular form f P S

k

r

f

ˇ̌
2´k

1 ` S “ 0

r

f

ˇ̌
2´k

1 ` U ` U

2

“ 0.

Definition (Space of period polynomials)
We define the space of period polynomials by

W

k

:
“ tppxq P V

k

ˇ̌
p

ˇ̌
2´k

1 ` S “ p

ˇ̌
2´k

1 ` U ` U

2

“ 0u

Remark

If k is clear from the context we simply write p
ˇ̌
� instead of p

ˇ̌
2´k

�.
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52=1
,

it '
= r

si . E- sis:

Proposition (trivial Period relations)

For f P S

w`2

and r
k

pfq “

≥
i8
0

fp⌧q⌧

k d ⌧ with k “ 0, . . . , w we have the period relations:

0 “ r

k

pfq ` p´1q

k

r

w´k

pfq

0 “ r

k

pfq ` p´1q

k

ÿ

0§i§k

i”0 mod 2

ˆ
k

i

˙
r

w´k`i

pfq ` p´1q

k

ÿ

0§i§w´k

i”k mod 2

ˆ
w ´ k

i

˙
r

i

pfq

0 “

ÿ

1§i§k

i”1 mod 2

ˆ
k

i

˙
r´k`i

pfq `

ÿ

0§i§w´k

iık mod 2

ˆ
w ´ k

i

˙
r

i

pfq

Proof: The first follows by comparing the coefficients of r
f

ˇ̌
2´k

1 ` S “ 0. For the other we

decompose r
f

ˇ̌
2´k

1 ` U ` U

2

“ 0 w.r.t. to the !-eigenspaces. l
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We aim to understand better the map

S

k

Ñ V

k

f fiÑ r

f

.

Via the involution

V

k

Ñ V

k

ppxq fiÑ pp´xq

induced by x fiÑ ´x we obtain a decomposition V
k

“ V

`
k

‘ V

´
k

where

V

`
k

“ tp P V

k

ˇ̌
ppxq “ pp´xqu

V

´
k

“ tp P V

k

ˇ̌
ppxq “ ´pp´xqu.

In fact we have also a decomposition

W

k

“ W

`
k

‘ W

´
k

Finally, for f P S

k

we have the decomposition r
f

“ r

`
f

` r

´
f

.
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Theorem (Eichler-Shimura)

(i) The map r´ : S
k

Ñ W

´
k

is an isomorphism of vector spaces.

(ii) We have p`
k

pxq

:
“ x

k´2

´ 1 P W

`
k

and the map r` : S
k

Ñ

W

`
k äCp`

k

is an

isomorphism of vector spaces.

We sketch a proof of the weaker claim M

k

‘ S

k

– W

k

. So that we can avoid the additional

action of ✏ “

´
´1 0

0 1

¯
, which give rise to the spitting V “ V

`
‘ V

´ into eigenspaces for ✏,

i.e., the space of even polynomials V ` and the space of odd polynomials V ´ .

Proposition
For all k • 4 we have

dimW

k

“ dimM

k

` dimS

k

.
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Proof: We set

V

S

“ tp P V

ˇ̌
p

ˇ̌
2´k

S “ pu

V

U

“ tp P V

ˇ̌
p

ˇ̌
2´k

U “ pu.

As being an involution S is diagonalizeable, i.e.,

V “ V

S

‘ kerp1 ` Sq.

The characteristic polynomials for U P V

k

is px ´ 1qpx ´ !qpx ´ !

2

q, since U is a root for
X

3

´ 1. Therefore

V

k

“ V

U

k

‘ kerpU ´ ! ¨ 1q ‘ kerpU ´ !

2

¨ 1q.

We further need the non-degenerate bilinear form on V
k

given by

pX

m

, X

n

q “

#
p´1q

n

`
k´2

n

˘´1

, if n ` m “ k ´ 2

0, else.

It is straightforward to show that
A
p

ˇ̌
2´k

�, q

ˇ̌
2´k

�

E
“ xp, qy

for all � P SL
2

pZq.
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Now we get for all subspaces F Ñ V

k

the orthogonal decomposition

V

k

“ F ‘ F

K

where
F

K
“ tq P V

k

ˇ̌
xq, py “ 0 @ p P F u.

We have V S

k

K kerp1 ` sq, since for p P V

S

k

with q P kerp1 ` sq we have

xp, qy “

A
p

ˇ̌
2´k

S, q

ˇ̌
2´k

S

E
“ xp,´qy “ ´xp, qy “ 0.

Analogously we get

V

U

k

K kerpU ´ ! ¨ 1q

V

U

k

K kerpU ´ !

2

¨ 1q

We conclude

kerp1 ` U ` U

2

q “ kerpU ´ ! ¨ 1q ‘ kerpU ´ !

2

¨ 1q “ pV

U

k

q

K

and
W

k

“ pV

S

k

q

K
X pV

U

k

q

K
“ pV

S

k

` V

U

k

q

K
.
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Observe that T “

`
1 1

0 ´1

˘
“ U

2

S. Now any p P V

S

k

X V

U

k

must therefore be 1-periodic, i.e.
pp

ˇ̌
2´k

T qpxq “ ppx ` 1q, and there it must be constant. By assumption we have k ° 2 and

therefore the constants are not elements of V S

k

, as otherwise

ppxq “ x

k´2

pp´1{xq “ pp

ˇ̌
2´k

Sqpxq

is not satisfied. Moreover we have

W

k

“ pV

S

k

‘ V

U

k

q

K
.

All these consideration then prove the first step of the proof:

dimW

k

“ dimpV

S

k

‘ V

U

k

q

K
“ dimV

k

´ dimpV

S

k

q ´ dimpV

U

k

q.

We now calculate these dimensions:

dimV

k

“ dimtp P Crxs

ˇ̌
deg p § k ´ 2u “ k ´ 1.
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The polynomials s
n

pxq “ px ´ iq

n

px ` iq

k´2´n, n “ 0, . . . , k ´ 2 give rise to a basis of
eigenvectors in V

k

with eigenvalues p´1q

n

i

n´2 w.r.t. the action of S. Hence we get

dimV

S

k

“ #tn “ 0, . . . , k ´ 2
ˇ̌
p´1q

n

i

k´2

“ 1u

“ #tn “ 0, . . . , k ´ 2
ˇ̌
2n ” k ´ 2 mod 4u

“ 1 ` 2

Z
k ´ 2

4

^
.

The polynomials u
n

pxq “ px ` !q

n

px ` !q

k´2´n, n “ 0, . . . , 2 ´ k give rise to a basis of
eigenvectors in V

k

with eigenvalues !k´2`n w.r.t. the action of U . In a similar way we get

dimV

U

k

“ #tn “ 0, . . . , k ´ 2
ˇ̌
w

k´2`n

“ 1u “ 1 ` 2

Z
k ´ 2

6

^
.

Finally we get for k • 4 the formula

dimW

k

“ k ´ 1 ´

ˆ
1 ` 2

Z
k ´ 2

4

^˙
´

ˆ
1 ` 2

Z
k ´ 2

6

^˙

“

#
2

X
k

12

\
` 1, falls k ı 2 mod 12

2
X

k

12

\
´ 1, falls k ” 2 mod 12

Comparing this with the formula for dimpM

k

q resp. for dimpS

k

q the claim follow. l
86 / 97

Theorem (Haberland)
Let k • 4, and let f, g P S

k

. Then their Petersson scalar product satisfies

xf, gy “

1

6p2iqk´1

A
r

f

ˇ̌
2´k

pT ´ T

´1

q, r

g

E

“

1

3p2iqk´1

ÿ

0†m†n†k´2

mın mod 2

p´1q

m

ˆ
k ´ 2

n

˙ˆ
n

m

˙
r

n´2´m

pfqr

m

pgq.

Proof: Either proved by a long calculation or by using group cohomology . l

Corollary

The morphisms r` : S
k

Ñ

W

`
k äCp

k

and r´ : S
k

Ñ W

´
k

are injektive.

This Corollary will imply the Theorem of Eichler-Shimura:
Proof: Let f P S

k

with f Ä kerpr´
q Y kerpr`

q. By the theorem of Haberland we get
xf, fy “ 0, since by assumption all periods are 0. Since the Petersson scalar product is
non-degenerate, we must have f “ 0. We conclude the injectivity of r´ and r`, since
p

`
k

R r

`
pS

k

q. l
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Modular formMartina Roger : Periods

Theorem (Kohnen-Zagier)

For 0 § a § k{2 let

E

a,k´a

“

#
E

a

E

k´a

if a ‰ 2

⇡

hol

pE

˚
2

E

k´2

q “ E

2

E

k´2

´

12

k´2

E

1
k´a

else,

then the set tE

a,k´a

u

0§a§k{2 spans M
k

.

Proof: We have E
k

“ E

0,k

. Let f P S

k

be a Hecke eigenform, then with some non-zero
constants ,1, which only depend on k, we have by Rankin’s formula for all even 0 † a § k{2

@
f,E

a,k´a

D
“ Lpf, k ´ 1qLpf, aq “ 

1
r

k´2

pfqr

a´1

pfq

We observe, that since Lpf, sq is for s “ k ´ 1 given by an Euler product, we have
r

k´2

pfq ‰ 0. Thus if f is orthogonal to all such E
a,k´a

, all linear equations in the odd periods
of f have to vanish. Thus r´

f

“ 0 and by the theorem of Eichler-Shimura we must have f “ 0.
l
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on

always
# O

Theorem (Fukuhara)
Let d

k

“ dimS

k

, then a basis for M
k

is given by

#
tE

k

u Y tE

4i

E

k´4i

| i “ 1, ..., d
k

u if k ” 0 pmod 4q

tE

k

Y tE

4i`2

E

k´4i´2

| i “ 1, ..., d
k

u if k ” 2 pmod 4q.

For example for M
36

, we have the basis

tE

36

, E

4

E

32

, E

8

E

28

, E

12

E

24

u.
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Tasara of
.
al give another basis

using a clever partial fraction
expansion



Theorem (Eichler, Shimura, Manin)

Let f “

∞
a

n

pfqq

n

P S

k

be a Hecke eigenform. Then there exist to non-zero complex
numbers !`

f

P iR and !´
f

P R, such that

r

´
f

!

´
f

,

r

`
f

!

`
f

P Qpa

2

pfq, a

3

pfq, . . . qrXs “ QpfqrXs.

Moreover, one may choose !`
f

and !´
f

such that

!

`
f

!

´
f

“ ixf, fy.

Proof: This combines the trivial Period relations plus relations obtain by Rankin’s method for
calulating † f,E

a

E

k´1

° . l
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a

We make explicit the above results for

f “ �p⌧q “ q

8π

n“1

p1 ´ q

n

q

24

“ q ´ 24q2 ` 252q3 ` ¨ ¨ ¨ P S

12

.

The trivial period relations imply

Lp�, 2q “ Lp�, 10q

48Lp�, 4q “ 48Lp�, 9q “ 25Lp�, 10q

12Lp�, 6q “ 5Lp�, 10q

Lp�, 1q “ Lp�, 11q

Lp�, 3q “ Lp�, 9q

14Lp�, 5q “ 14Lp�, 7q “ 9Lp�, 9q.

This suffices to show

r

´
�

pXq “

5

2
Lp�, 11q

`
4pX

9

` Xq ´ 25pX

7

` X

3

q ` 42X5

˘
.

Using Rankin-Selberg unfolding gives

�x�,�y “ x�,↵G

12

` ��y “ x�, G

8

G

4

y “

1

211
Lp�, 1qLp�, 4q

for � “

15

2764

.
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IT

With another modular form g “ F

2

pG

6

, G

2

q P M

12

, where F
2

p˚, ˚q denotes the second
Rankin-Cohen bracket, one calculates

�x�,�y “ x�, gy “ ´

45

2048
Lp�, 3qLp�, 4q

for � “ ´

5

48

.
These two additional identities give rise to

1620Lp�, 9q “ 691Lp�, 11q.

We conclude

r

`
�

pxq “

691

36
iLp�, 11q

´ 36

691
pX

10

´ 1q ´ X

2

pX

2

´ 1q

3

¯
.
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For the second claim of the theorem we note

r

´
�

pXq “ q

´
!

´
�

`
4pX

9

` Xq ` . . .

˘

r

`
�

pXq “ q

`
!

`
�

´ 36

691

`
X

10

` 1
˘

` . . .

¯

mit

q

´
!

´
�

“

5

2
Lp�, 10q

q

`
!

`
�

“

691

36
iLp�, 11q

and

!

´
�

!

`
�

“ ix�,�y.

This implies

q

´
q

`
“

3455

72

Lp�, 10qLp�, 11q

x�,�y

“ 1024.

We set for an arbitrary q´ P Q˚

!

´
�

“

5

2

1

q´
Lp�, 10q

!

`
�

“

691

36 ¨ 1024
q´Lp�, 11q.

93 / 97



In particular for q´ “ 9 we get for example

!

´
�

« 0, 00102991957 . . .

!

`
�

« 0, 001005264371 . . . ¨ i.

Remark
Write �p⌧q “

∞
n•1

⌧pnqq

n, then

Lp�, sq “

8ÿ

n“1

⌧pnq

n

s

converges for Repsq °

12

2

` 1 “ 7 quite quickly. Using this fact one can calculate
!

´
�

« Lp�, 10q and !`
�

« Lp�, 11q very fast and very precise. Thus this also holds for
x�,�y “ !

`
�

!

´
�

. Conversely, numerical calculations of the integral

x�,�y “

ª

F

�p⌧q�p⌧qy

12

dx d y

y

2

.

are far away of producing such precise approximations in a reasonable time.
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Definition
Let

M

n

“ t

`
a b

c d

˘
P M

2

pZq

ˇ̌
ad ´ bc “ nu

and
M

n

“

à

�PMn

Z�.

then an operation of M
n

on V
k

is defined by the linear extension of

ppxq

ˇ̌
2´k

`
a b

c d

˘
“ pcx ` dq

k´2

p

ˆ
ax ` b

cx ` d

˙
.
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Theorem (Manin, Zagier)

For n P N we define T̃
n

P M
n

by

T̃

n

“

ÿ `
a b

c d

˘
,

where in the sum only those
`
a b

c d

˘
P M

n

contribute, for that a ° |c|, d ° |b| and bc † 0, or if
b “ 0, then ´a † 2c § a, or if c “ 0, then ´d † 2b § d.
The we have

T̃

n

W

`
k

Ä W

`
k

und T̃

n

W

´
k

Ä W

´
k

for all k, n P N. Furthermore we have

r

Tnf pXq “ r

f

ˇ̌
2´k

T̃

n

.

i.e. the action of T
n

on S
k

resp. on M
k

corresponds to the action of T̃
n

on W
k

.

Example
We have

T̃

2

“

ˆ
1 0
0 2

˙
`

ˆ
1 1
0 2

˙
`

ˆ
2 0
0 1

˙
`

ˆ
2 0
1 1

˙
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Corollary

If f is a Hecke eigenform, then r
f

is an eigenvector for the action of T̃
n

on W
k

.

It is instructive to study the action of T̃
2

, T̃
4

, T̃
6

on r`
�

and r´
�

.

Corollary
Let

f “

8ÿ

n“1

a

n

q

n

“ q `

8ÿ

n“2

a

n

q

n

be a Hecke eigenform, then we have

a

l

“

ÿ
`
a b

c d

˘
P ˜

Tl

ÿ

0§n§l´1

n gerade

ˆ
k ´ 2

n

˙
r

n

pfq

r

0

pfq

pb

k´2´n

d

n

´ b

n

d

k´2´n

q.

Proof: We have
a

l

r

f

pXq “ r

Tlf pXq “ r

f

ˇ̌
2´k

T̃

l

pXq,

in particular this holds for X “ 0, which is the claimed formula. l
Exercise:Determine the Ramanujan tau function for ⌧p2q, ⌧p3q, ⌧p4q and ⌧p6q by this method.
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