
Theorem (Dimension formula)
For an even positiver integer k we have

dimCMk

“

#
t k

12

u ` 1 , k ı 2 mod 12

t k

12

u , k ” 2 mod 12
.

Proof: This will now follow by induction on k from the results in previous Proposition. For k † 12
the above dimension formula is already proven. Combing the results of previous Proposition we
have

M
k`12

“ CE
k`12

‘ � ¨ M
k

and since t k

12

u ` 1 “ tk`12

12

u the statement follows inductively.

k 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

dimCMk

1 0 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4

Figure : Dimension of Mk for even 0 § k § 36.
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OEIS

Hurwitz Identity

E2

4

, E
8

P M
8

. Since dimCM8

“ 1 there must exists a c P C with E2

4

“ cE
8

. But since
both have 1 as the constant term in their Fourier expansion we deduce c “ 1. Hence

Both E3

4

and E2

6

are modular forms of weight 12 having 1 as the constant term in their Fourier
expansion and therefore E3

4

´ E2

6

P S
12

. By the last Proposition v) this has to be a multiple of
� and comparing the first few Fourier coefficients gives

�p⌧q “

E
4

p⌧q

3

´ E
6

p⌧q

2

1728
.
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= O t Cft .  - -

In general every modular form can be written (uniquely) as a polynomial in E
4

and E
6

:

Proposition

For k • 0, the set tEa

4

Eb

6

| a, b • 0, 4a ` 6b “ ku is a basis of the space M
k

.

Proof: We first check that the mentioned set has the correct size. Let N
k

be the number of
solutions to 4a ` 6b “ k in nonnegative integers a and b. For k § 12 one can check directly
that N

k

“ dimCMk

(given in the above theorem) and for k • 12 one can check that
N

k

“ N
k´12

` 1. Therefore we have N
k

“ dimCMk

for all k. It remains to show that the
set is linearly independent. Suppose we have a relation of the form

ÿ

4a`6b“k

a,b•0

�
a,b

E
4

p⌧q

aE
6

p⌧q

b

“ 0

for all ⌧ P H. If there is a pure E
4

term, say �
a,0

E
4

p⌧q

a, then setting ⌧ “ i shows
�
a,0

E
4

piqa “ 0 since E
6

piq “ 0. Since E
4

piq ‰ 0 (again by the valence formula) we
deduce �

a,0

“ 0. Therefore all nonzero terms in the sum have b • 1. As E
6

is not identically
0, we can divide by it and get

ÿ

4a`6b“k

a,b•0

�
a,b

E
4

p⌧q

aE
6

p⌧q

b´1

“ 0 ,

which is a linear relation in weight k ´ 6. By induction we see that the remaining coefficients are
0. l
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Algorithm

Starting with a modular form f “

∞8
n“0

a
n

qn P M
k

and choosing a and b with 4a ` 6b “ k,
we have

f ´ a
0

Ea

4

Eb

6

P S
k

.

We have shown S
k

“ � ¨ M
k´12

, i.e. we find a g P M
k´12

with f “ a
0

Ea

4

Eb

6

` � ¨ g.
With the explicit expression

� “

E3

4

´ E2

6

1728

of �, this gives a recursive algorithm (and in fact another way of proving the above Proposition)
to write f as a polynomial in E

4

and E
6

.
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Proposition
The modular forms E

4

and E
6

are algebraically independent over C.

Proof. Let P P CrX,Y s be with P pE
4

p⌧q, E
6

p⌧qq “ 0 for all ⌧ P H. Since the weight gives
a grading we can reduce this to the case where P pE

4

, E
6

q is a sum of modular forms of the
same weight k. But we know that Ea

4

Eb

6

with 4a ` 6b “ k are linearly independent and
therefore we conclude P “ 0. l
Summarizing all the results we get the following description of the space of modular forms.

Corollary
Let M denote the space of all modular forms (of level 1), then we have

M “

8à

k“0

M
k

“ CrE
4

, E
6

s – CrX,Y s ,

i.e. M is a graded C-algebra, which is isomorphic to the polynomial ring in two variables.
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- Theorem

Derivatives and quasi modular forms

Let f “

∞8
n“0

a
n

qn be a modular form, then we write for its holomorphic derivative w.r.t. ⌧

f 1 :“
1

2⇡i

d

d⌧
f “ q

d

dq
f “

8ÿ

n“1

na
n

qn .

Here the factor 2⇡i has been included in order to preserve the rationality properties of the
Fourier coefficients.

Proposition

The derivative of a modular form f P M
k

satisfies for all
`
a b

c d

˘
P SL

2

pZq:

f 1
ˆ
a⌧ ` b

c⌧ ` d

˙
“ pc⌧ ` dq

k`2f 1
p⌧q `

k

2⇡i
cpc⌧ ` dq

k`1fp⌧q .

Idea of proof: a straightforward calculation l
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Definition
For a modular form f P M

k

, we define the Serre derivative by

B

k

f :“ f 1
´

k

12
E

2

f .

Proposition
For a modular form f P M

k

we have B

k

f P M
k`2

.

Proof: We set gp⌧q “ f 1
p⌧q ´

k

12

E
2

p⌧qfp⌧q, we obtain for
`
a b

c d

˘
P SL

2

pZq

g

ˆ
a⌧ ` b

c⌧ ` d

˙
“ f 1

ˆ
a⌧ ` b

c⌧ ` d

˙
´

k

12
E

2

ˆ
a⌧ ` b

c⌧ ` d

˙
f

ˆ
a⌧ ` b

c⌧ ` d

˙

“ pc⌧ ` dq

k`2f 1
p⌧q `

k

2⇡i
cpc⌧ ` dq

k`1fp⌧q

´

k

12

ˆ
pc⌧ ` dq

2E
2

p⌧q ´

6

⇡
icpc⌧ ` dq

˙
pc⌧ ` dq

kfp⌧q

“ pc⌧ ` dq

k`2

ˆ
f 1

p⌧q ´

k

12
E

2

p⌧qfp⌧q

˙
“ pc⌧ ` dq

k`2gp⌧q .

Since g is also holomorphic in H and at 8 we obtain g P M
k`2

. l
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Definition

The ring of quasimodular forms is defined by ÄM “ CrE
2

, E
4

, E
6

s.

Proposition

The ring of quasimodular forms is closed under differentiation and we have

E1
2

“

E2

2

´ E
4

12
, E1

4

“

E
2

E
4

´ E
6

3
, E1

6

“

E
2

E
6

´ E2

4

2
.

Proof: We have

B

4

E
4

“ E1
4

´

1

3
E

2

E
4

P M
6

,

B

6

E
6

“ E1
6

´

1

2
E

2

E
6

P M
8

.

Since both spaces are one-dimensional with basis E
6

and E2

4

respectively we get the second
and third equation after comparing the first Fourier coefficients. Using again the modularity
formula of E

2

and a straightforward calculation (as in the proof of modularity for B

k

) we find

E1
2

´

1

12
E2

2

P M
4

.

Therefore this is also a multiple of E
4

, which turns out to be ´

1

12

by comparing the Fourier
coefficients. l
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Modular forms and L-series

Outlock
The L-series attached to modular forms have many nice aspects ("motivic","automorphic",...). We
will study here just some of their basic properties.

We first study the growth of the Fourier coefficients a
n

of fp⌧q “

∞
a
n

qn P M
k

w.r.t. k.

Proposition

Let fp⌧q “ G
k

p⌧q, then there are A,B P R with A • 1 and B § ⇣pk ´ 1qsuch that

Ank´1

§ a
n

§ Bnk´1.

Proof: We have

G
k

“

B
2k

k ´ 1
`

ÿ
�
k´1

pnq qn,

where �
k´1

pnq “

∞
d|n d

k´1. Clearly nk´1

§ �
k´1

pnq. In addition we have,

a
n

nk´1

“

�
k´1

pnq

nk´1

“

ÿ

d|n

dk´1

nk´1

“

ÿ

d|n

1

dk´1

§

8ÿ

d“1

1

dk´1

“ ⇣pk ´ 1q. l

38 / 102

Theorem (Hecke bound)

If f “

∞
n•1

a
n

qn P S
k

, thena a
n

P Opn
k
2

q.

aHere the "Big-O-Notation" means that
ˇ̌
ˇ an

n
k
2

ˇ̌
ˇ is bounded for n Ñ 8.

Proof: We will show |a
n

| § n
k
2 with a suitable constant  “ pfq. The k-th Fourier

coefficient off is given by

a
n

“

1ª

0

fp⌧qe´2⇡in⌧ dx p⌧ “ x ` iyq.

Hence |a
n

| § e2⇡ny sup
0§x§1

|fpx ` iyq|. We set }f}p⌧q “

ˇ̌
fp⌧q

ˇ̌
y

k
2 , then

}f}

2

p�⌧q “ }f}

2

p⌧q

for all � P SL
2

pZq and therefore

sup
⌧PH

}f}p⌧q “ sup
⌧PSL2pZqzH

}f}p⌧q.
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← point wise

Peterson
non

Since f P S
k

we have in addition

lim
⌧Ñ8

}f}

2

p⌧q “ lim
⌧Ñ8

˜
ˇ̌ ÿ

n•1

a
n

qn
ˇ̌
2

yk

¸
“ lim

⌧Ñ8

˜
|q|

2

ˇ̌ ÿ

n•1

a
n

qn´1

ˇ̌
2

wyk

¸

“ lim
⌧Ñ8

pe´4⇡yykqa
n

“ 0.

Hence }f}p⌧q is bounded on H and thus we have a maximum

c
f

:
“ max

⌧PH
}f}p⌧q,

which in turn yields
|fpx ` iyq| “ }f}p⌧qy´ k

2
§ c

f

y´ k
2 .

Now we always have |a
n

| § e2⇡nyy´ k
2 c

f

and in particular this holds for y “

1

n

. We conclude

|a
n

| § e2⇡n
1
n

ˆ
1

n

˙´ k
2

c
f

“ n
k
2 .

l
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Remark

If f P M
k

, then a
n

“ Opnk

q. Only for f P S
k

we have the bound Opn
k
2

q.

The bounds for f P S
k

are far from beeing optimal, indeed it holds

a
n

“ Opn
k´1
2

q�
0

pnq .

This very deep result follows from Deligne’s proof of the Weil conjectures. He was able to
connect the Fourier coefficients to the number of points of certain varieties mod p.
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Definition
The L-series of a modular form fp⌧q “

∞
n•1

a
n

qn P S
k

is defined to be the Dirichlet-series
given by

Lpf, sq “

8ÿ

n“1

a
n

ns

, s P C.

Theorem (Hecke)

i) Lpf, sq converges for Repsq °

k

2

` 1 to a holomorphic function.

ii) Lpf, sq has a holomorphic continuation to the whole of C and satisfies a the functional
equation. Set Rpf, sq “ p2⇡q

´s�psqLpf, sq, then for all s P C

Rpf, k ´ sq “ p´1q

k
2 Rpf, sq.
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F-

Proof: i) By the Hecke bounds |a
n

| § n
k
2 we have

|a
n

n´s

| “ |a
n

|n´ Repsq
§ n

k
2 ´Repsq.

As ⇣psq “

∞
n•1

1

n

s converges absolutely for Repsq ° 1 we deduce Lpf, sq converges

absolutely for Repsq °

k

2

` 1.
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ii) We first recall

�psq “

8ª

´8
ts´1e´t d t

n´s

“ p2⇡q

s�psq

´1

8ª

0

ts´1e´2⇡nt d t.

This yields for Lpf, sq

Lpf, sq “

ÿ

n•1

a
n

n´s

“

ÿ

n•1

a
n

p2⇡q

s�psq

´1

8ª

0

ts´1e´2⇡nt d t

“ p2⇡q

s�psq

´1

8ª

0

ts´1

ÿ

n•1

a
n

e´2⇡nt d t

“ p2⇡q

s�psq

´1

8ª

0

ts´1fpitqd t.

Observe Lpf, sq is nothing else than what is also called a Mellin-transform.
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We further get

p2⇡q

´s�psqLpf, sq “

8ª

0

ts´1fpitqd t “

1ª

0

ts´1fpitqd t `

8ª

1

ts´1fpitqd t

“

8ª

1

ˆ
1

t

˙
s´1

f

ˆˆ
1

t

˙˙
d

ˆ
1

t

˙
`

8ª

1

ts´1fpitqd t

~
“

8ª

1

p´1q

k
2 tk´s´1fpitqd t `

8ª

1

ts´1fpitqd t

“

8ª

1

´
p´1q

k
2 tk´s´1

` ts´1

¯
fpitqd t “

:

8ª

1

"ps, tqfpitqd t.

Since "pk ´ s, tq “ p´1q

k
2 "ps, tq we deduce the functional equation

Rpf, k ´ sq “ p´1q

k
2 Rpf, sq.

Moreover since p2⇡q

s and �psq

´1 are holomorphic and since
8≥

1

"ps, tqfpitqd t has a

holomorphic continuation the last claim follows.
l
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Remark
The functional equation for Lpf, sq is a direct consequence of the modular transformation
w.r.t. S of f .

Conversely there is a famous theorem of Weil: A L-series Lpsq with a functional equation
Lpsq “ Lpk ´ sq�psq equals Lpf, sq for some modular form f , if Lpsq has certain
growth properties along vertical stripes.

The functional equation for the Riemann zeta function is proven along the same path, more
precisely one uses that the #-function is a modular form for a subgroup of SL

2

pZq.
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8

Motivation: The Riemann zeta function has an Euler product

⇣psq “

8ÿ

n“1

1

ns

“

π

p prim

1

p1 ´ p´s

q

,

as we have the geometric series expansion

1

1 ´ p´s

“ 1 `

1

ps
`

1

p2s
` ¨ ¨ ¨

Question
Which of the L-series Lpf, sq do have an Euler product, i.e. have the shape

Lpf, sq “

8ÿ

n“1

L
p

pf, sq

for some rational functions L
p

pf, sq ?

Answer: Hecke eigenforms will do.
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Definition (Hecke operator)
For n • 1 we define

T pnqfp⌧q “ nk´1

ÿ

a•1, ad“n

0§b†d

d´kf

ˆ
a⌧ ` b

d

˙
.

Proposition

(i) If f P M
k

, then T pnqf P M
k

. In particular, if fp⌧q “

∞
n•0

a
n

qn with q “ e2⇡i⌧ ,
then

T pnqfp⌧q “

8ÿ

m“0

�
m

qm

with
�
m

“

ÿ

d|pn,mq
d•1

dk´1anm
d2

.

(ii) We have

T pmqT pnqf “ T pmnqf, if pn,mq “ 1

T ppqT ppnqf “ T ppn`1

qf ` pk´1T ppn´1

qf, if p prime and n • 1.
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Te

Idea of Proof: Clearly T pnqf is holomorphic on H. Let

M
n

“ t

`
a b

c d

˘
P Mat

2,2

pZq | ad ´ bc “ n u,

then SL
2

pZq acts by multiplication from the left and

SL
2

pZqzM
n

“

! ˆ
a b
0 d

˙ ˇ̌
ˇad “ n, a, b, d P Z, 0 § b † d

)
.

Hence

T pnqfp⌧q “ nk´1

ÿ
`
a b

c d

˘
PSL2pZqzMn

pc⌧ ` dq

´kf

ˆ
a⌧ ` b

c⌧ ` d

˙

and the sum is unchanged if we replace
`
a b

c d

˘
by �

`
a b

c d

˘
with some � P Sl

2

pZq. Therefore
T pnqf satisfies the modular transformation property.
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It remains to show that T pnqf is holomorphic at 8: We have

T pnqfpnq “ nk´1

ÿ

ad“n

a•1,0§b†d

d´k

8ÿ

m“0

a
m

e2⇡i
a⌧`b

d m.

Using
ÿ

0§b†d

e2⇡im
b
d

“

#
d, d|m

0, sonst

Replacing m by md “ mn{a and using n{d “ a, we find

T pnqfp⌧q “

ÿ

mPZ

ÿ

ad“n,a•1

ak´1amn
a
qam “

ÿ

mPZ

ÿ

d|pm,nq
d•1

dk´1anm
d2

qm.

Hence for m † 0 we get �
m

“ 0, and therefore T pnqf is holomorphic at 8.

(ii) see reference, e.g. F. Martin & E. Royer, FORMES MODULAIRES ET PERIODES. l

Proposition
The Hecke operators act on M

k

and on S
k

.

Proof: With above notation we have �
0

“ �
k´1

pnq a
0

. If f P S
k

, then a
0

“ 0 and therefore
T pmqf “

∞
�
m

qm is also a cusp form since �
0

“ 0. l
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Definition (Hecke algebra)

We denote byT the algebra generated by T pnq for all n P N.

Remark
There are other ways to approach Hecke operators, namely double cosets, correspondences of
lattices or via pullback and pushforwards maps between modular curves. Outstanding results rely
deep connections of the Hecke algebra to arithmetic questions (e.g. Mazur’s theorem on torsion
subgroups of rational elliptic curves, Wiles’s proof of Fermat’s last theorem,...)
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Proposition (Some linear algebra)
LetT be a finite dimensional, commutative C-algebra. Let V ‰ 0 be a finite dimensional
C-vector space andT ãÑ EndpV q. Then there exists a simultaneous eigenvector v P V for all
T P T.

Proof: There exists a finite set of generators T
1

, . . . , T
n

ofT, as dimV † 8. Since the
characteristic polynomial of T

1

has a zero, we have an eigen space 0 ‰ V
1

Ñ V for T
1

. It
suffices to show T

i

V
1

Ä V
1

. For all v P V
1

we have T
1

v “ �
1

v and we get

T
1

pT
i

vq “ T
i

pT
1

vq “ T
i

�
1

v “ �
1

pT
i

vq.

Hence T
i

V
1

Ä V
1

for all T
i

.
We repeat this procedure for T

2

as operator on V
1

and obtain an eigen space V
2

Ñ V
1

Ñ V for
T
2

with T
i

V
2

Ñ V
2

for all T
i

.
After finitely many steps we obtain an eigenvector v

n

‰ 0 for all T P T. l
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Observe T pnq are endomorphisms of the vector spaces M
k

and S
k

. We a searching for
modular forms that are eigenfunctions for all T pnq:

Definition
A modular formf P M

k

, f ‰ 0, which is an eigenform for all T pnq is called Hecke eigenform. If
in addition a

1

pfq “ 1, then f is called normalised Hecke eigenform. Some authors also use
solely eigenform or Hecke form.

Theorem (Hecke eigenforms)

Let fp⌧q “

∞
a
n

qn be a modular form with T pnqf “ �pnqf for all n P N (f is called a
eigenform), then

(i) a
1

“ a
1

pfq ‰ 0

(ii) If f is normalised, then a
n

“ �pnq.

Proof: The coefficient �
1

of T pnqf equals a
n

, and by assumption �
1

“ �pnqa
1

, hence
a
n

“ �pnqa
1

. l
Any simultanous Hecke-Eigenspace is one dimensional, since for f, g P M

k

with
T pnqf “ �pnqf and T pnqg “ �pnqg we get f “ g for some  P C.
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Corollary

If f “

∞
a
n

qn is a normalised Hecke eigenform then

a
n

a
m

“ a
nm

for pn,mq “ 1

a
p

a
p

n
“ a

p

n`1 ` pk´1a
p

n´1 if p prime and n • 1.

Proof: This follows from the recursive properties for the Hecke operators. l

Theorem
The L-series Lpf, sq of a normalised Hecke eigenform has a Euler product

Lpf, sq “

ÿ

n•1

a
n

ns

“

π

p prim

1

1 ´ a
p

p´s

` pk´1´2s

54 / 102

Proof: The series ta
n

u

nPN given by the Fourier coefficients of f determines a multiplicative
function a : N Ñ C, n fiÑ a

n

. For any such multiplicative function we get

Lpf, sq “

π

pPP

8ÿ

n“0

a
p

np´ns.

If we set T “ p´s, we have to check

8ÿ

n“0

a
p

nTn

“

1

1 ´ a
p

T ` pk´1T 2

.

But this is equivalent to the identity we have seen before

1 “ p1 ´ a
p

T ` pk´1T 2

q ¨

8ÿ

n“0

a
p

nTn

“ 1 `

8ÿ

n“1

´
a
p

n
´ a

p

a
p

n´1 ` pk´1a
p

n´2

¯
Tn.

l
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it is He cue eighteen !

Theorem
The cusp form

�p⌧q “ q
8π

n“1

p1 ´ qnq

24

“

8ÿ

n“1

⌧pnqqn P S
12

ist is a normalised Hecke eigenform.

Proof: Obvious, since dimS
12

“ 1. l

Remark
By the above theorem we have that ⌧pnq is a multiplicative arithmetic function. For example we
have

⌧p2q⌧p3q “ ´24 ¨ 252 “ ´6048 “ ⌧p6q

⌧p2q

2

“ 576 “ ´1472 ` 2048 “ ⌧p4q ` 211.
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F- dix bore , Converges
Dejong , Bimini .
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tested upto very large ponies G20 Digits )

Theorem
(i) The Eisenstein series

G
k

“ ´

B
k

2k
`

8ÿ

n“1

�
k´1

pnq qn

is a Hecke eigenform.

(ii) G
k

has the L-series

LpG
k

, sq “

8ÿ

n“1

�
k´1

pnq

ns

“ ⇣psq⇣ps ´ k ` 1q.

Proof: (i) It is straightforward to show that �
k´1

is a multiplicative function satisfying the required
recursive property for prime powers, i.e.

�
k´1

pnq�
k´1

pmq “ �
k´1

pnmq for pn,mq “ 1

�
k´1

ppq�
k´1

ppnq “ �
k´1

`
pn`1

˘
` pk´1�

k´1

`
pn´1

˘
if p prime and n • 1.

(ii) We get

8ÿ

n“1

�
k´1

pnq

ns

“

ÿ

a,d•1

ak´1

asds
“

ÿ

d•1

1

ds

ÿ

a•1

1

as´k`1

“ ⇣psq⇣ps ´ k ` 1q. l

57 / 102



Examples

�
3

p6q “ 1 ` 23 ` 33 ` 63 “

`
1 ` 22

˘ `
1 ` 33

˘
“ �

3

p2q�
3

p3q

�
3

`
23

˘
“ 1 ` 23 ` 43 ` 83 “

`
1 ` 23

˘ `
1 ` 23 ` 43

˘
´ 23

`
1 ` 23

˘

“ �
3

p2q�
3

p4q ´ 23�
3

p2q

�
k

ppq�
k

ppnq “ �
k

`
pn`1

˘
` pk�

k

`
pn´1

˘
.

Observe we had not use the fact that k is odd!
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We can naively search for eigenforms. For example S
24

is a two dimensional C-vector space
spanned by

�2

p⌧q “

˜
q

8π

n“1

p1 ´ qnq

24

¸
2

“ q2 ´ 48q3 ` 1080q4 ` ¨ ¨ ¨

�p⌧qp240G
4

q

3

p⌧q “ q ` 696q2 ` 162252q3 ` 12831808q4 ` ¨ ¨ ¨

Any normalised eigenform f P S
24

must equal

f “ p240G
4

q

3�p⌧q ` ��p⌧q

2

for some � P C. If T p2qf “ µf , then

a2
2

“ a
4

` 223a
1

.

Since a
2

“ 696 ` � and a
4

“ 12831808 ` 1080� we get that � is a root of

�2

`

3

2
� ´ 20736000 “ 0.

Therefore f is a Hecke-Eigenform if and only if

f “ p240G
4

q

3� ` p156 ˘ 12
?

14469q�2.
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@ must hold

Corollary
There are Hecke-eigenforms in M

k

resp. S
k

.

Actually we aim for more

Proposition

If pV, x , yq is a hermitian C-vector space and if T P EndpV q is self-adjoint, i.e.

xTv,wy “ xv, Twy for all v, w P V ,

then V has a basis given by eigenvectors for T .

Thus we need to find a hermitian scalar product on S
k

s.t. the Hecke operator T pnq are
self-adjoint.
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Theorem (Petersson)
If f, g P S

k

, then

xf, gy “

ª

F“SL2pZqzH

fp⌧qgp⌧qyk
dx d y

y2

defines a positive definite hermitian scalar product on S
k

. It is called the Petersson scalar product

Proof: We have to check

well-definededness for x , y : S
k

ˆ S
k

Ñ C.

xv,�!
1

` µ!
2

y “ �xv
1

,!
1

y ` µxv
1

,!
2

y

xv, wy “ xw, vy.

x , y is positive definite, i.e. xv, vy • 0 and xv, vy “ 0 if and only if v “ 0.

Only the first claim needs some detailed justification.
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At first we see that the integrand is SL
2

pZq-invariant, indeed

f
´a⌧ ` b

c⌧ ` d

¯
“ pc⌧ ` dq

kfp⌧q

g
´a⌧ ` b

c⌧ ` d

¯
“ pc⌧ ` dq

k

gp⌧q

Im
´a⌧ ` b

c⌧ ` d

¯
“ |c⌧ ` d|

´k

Imp⌧q

Hence

f
´a⌧ ` b

c⌧ ` d

¯
g

´a⌧ ` b

c⌧ ` d

¯
Im

´a⌧ ` b

c⌧ ` d

¯
k

“ fp⌧qgp⌧q Imp⌧q

k.
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2

Furthermore we have

d
´a⌧ ` b

c⌧ ` d

¯
“ pc⌧ ` dq

´2 d ⌧

d
´a⌧ ` b

c⌧ ` d

¯
“ pc⌧ ` dq

´2 d ⌧ ,

and

d
´

a⌧`b

c⌧`d

¯
d

´
a⌧`b

c⌧`d

¯

Im
´

a⌧`b

c⌧`d

¯
“

d ⌧ d ⌧

Imp⌧q

2

“ 2i
dx d y

y2
.

Therefore the integral is invariant under the modular transformations ⌧ fiÑ

a⌧`b

c⌧`d

.
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The integral exists:

fp⌧qgp⌧q “

ÿ

n•1

a
n

qn
ÿ

m•1

b
m

qm “

´ ÿ

n•1

a
n

e2⇡inxe´2⇡ny

¯´ ÿ

m•1

b
m

e´2⇡imxe´2⇡my

¯

“

ÿ

n•1

a
n

b
n

e´4⇡ny

` „
ÿ

l

with e2⇡ilx-terms“

We now cut the Fundamental domain F at the line y “ T
0

.
ª

F

fp⌧qgp⌧qyk
dx d y

y2
“

ª

A

fp⌧qgp⌧qyk
dx d y

y2
`

ª

B

fp⌧qgp⌧qyk
dx d y

y2

For the bounded domain A the integral exists by continuity of the integrand. Because of

fp⌧qgp⌧q “ ¨ ¨ ¨ “

ÿ
a
n

b
n

e´4⇡ny

` terms with e2⇡imx

we get for all m P Zzt0u, using
≥

´ 1
2 §x§ 1

2

hpyqe2⇡imx

“ 0,

ª

B

fp⌧qgp⌧qyk
dx d y

y2
“ lim

T1Ñ8

ª

´ 1
2 §x† 1

2
T0†y†T1

fp⌧qgp⌧qyk
dx d y

y2

“ lim
T1Ñ8

ª

T0§y§T1

8ÿ

n“1

a
n

b
n

e´4⇡nyyk´2 d y,
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A IffTo

For the remaining integral we get

ÿ
a
n

b
n

e´4⇡ny

“ e´4⇡y

´ÿ
a
n

b
n

e´4⇡pn´1qy
¯

“ e´4⇡y

´
a
1

b
1

` a
2

b
2

` ¨ ¨ ¨

¯
.

Because of the Hecke-bound for the growth of the Fourier coefficients the sum is bounded, thus

lim
T1Ñ8

ª

T0§y§T1

ÿ
a
n

b
n

e´4⇡nyyk´2 d y § lim
T1Ñ8



ª

T0§y§T1

e´4⇡yyk´2 d ty † 8.

We conclude that Petersson’s scalar product is well-defined. l
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Theorem (Petersson, Hecke)
The Hecke operators are self-adjoint w.r.t. the Peterson scalar product, i.e.,

xT pnqf, gy “ xf, T pnqgy

for alle T pnq P TpS
k

q and f, g P S
k

.

Proof: This a long calculation, we refer to the literature.

Consequences from linear algebra
S
k

has an orthonormal basis given by Hecke- eigenforms.

The Fourier coefficients of normalised Hecke eigenforms are real-algebraic numbers, since
for any self-adjoint operator F with eigenvector v we get

�xv, vy “ xFv, vy “ xv, Fvy “ �xv, vy,

hence � “ �.
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Theorem
We have a bilinear and non-degenerate pairing

M
k

ˆTpM
k

q Ñ C

pf, T q fiÑ a
1

pTfq.

Proof: The pairing is clearly bilinear. We have to show, if a
1

pT
n

fq “ 0 for all n P N then we
must have f “ 0. If a

1

pT pfqq “ 0 for all f P M
k

, then we have for all n and all f

a
1

pTT
n

fq “ a
1

pT
n

pTfqq “ a
n

pTfq “ 0.

Therefore Tf “ 0 for all f , which impliesT “ 0. l

Corollary
The map

M
k

Ñ HomCpTpM
k

q,Cq

f fiÑ

`
T fiÑ a

1

pT pfqq

˘

is an isomorphism ofTpM
k

q-modules.
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Of practical use2 is the converse direction: Is ' P HomCpTpM
k

q,Cq, then we get the modular
form

f
'

“

8ÿ

m“0

'pT pmqqqm.

For example, if

TpM
k

q ãÑ EndCpM
k

q – M
nˆn

pCq

T fiÑ

¨

˚̋
a
11

pT q ¨ ¨ ¨ a
1n

pT q

...
. . .

...
a
n1

pT q ¨ ¨ ¨ a
nn

pT q

˛

‹‚

then 'pT q “ a
ij

pT q P HompT,Cq.

2e.g. application in SAGE as descripted in the notes by W. Stein.
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o

Rankin-Selberg method
For the Eisenstein series we have a decomposition

G
k

“

pk ´ 1q!

p2⇡iqk
1

2

ÿ

m,n

1 1

pm⌧ ` nq

k

“

pk ´ 1q!

p2⇡iqk
1

2

8ÿ

r“1

1

rk

ÿ

m,nPZ
pm,nq“1

1

pm⌧ ` nq

k

“

pk ´ 1q!

p2⇡iqk
1

2
⇣pkq

ÿ

m,nPZ
pm,nq“1

1

pm⌧ ` nq

k

This works because of Euklid’s lemma: For every pc, dq P Z2 with pc, dq “ 1 there exist a`
a b

c d

˘
P SL

2

pZq. Given such a solution, then
ˆ
1 1
0 1

˙ `
a b

c d

˘
“

ˆ
a ` c b ` d
c d

˙

gives the equationpa ` cqd ` pb ` dqc “ 1. If we plug m “ c and n “ d into G
k

, then we
derive

G
k

“

pk ´ 1q!

p2⇡iqk
1

2
⇣pkq

ÿ

xp

1 1

0 1

qy

z
`
a b

c d

˘
PSL2pZq

1

pc⌧ ` dq

k

.
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Theorem (Rankin-Selberg unfolding)

Let fp⌧q “

∞8
n“1

a
n

qn P S
k

and gp⌧q “

∞8
m“0

b
m

qm P M
l

. Then, if k ´ l • 2 we have
for the Petersson scalarproduct

xfp⌧q, gp⌧qG
k´l

p⌧qy “

pk ´ 2q!

p4⇡q

k´1

8ÿ

n“1

a
n

b
n

nk´1

.

Proof: By definition we have

xfp⌧q, gp⌧qG
k´l

p⌧qy “

ª

F

fp⌧qgp⌧qG
k

p⌧qyk
dx d y

y2
.

Because of above notation we get for the integrand

p2⇡iqk

pk ´ 1q!⇣pkq

fp⌧qgp⌧qG
k´l

p⌧qyk

“

ÿ
`
a b

c d

˘
P
xp

1 1

0 1

qy

z SL2pZq

pc⌧ ` dq

kfp⌧qpc⌧ ` dq

l

gp⌧q

yk
ˇ̌
pc⌧ ` dq

ˇ̌
2k

“

ÿ

�P
xp

1 1

0 1

qy

z SL2pZq
fp�⌧qgp�⌧q Imp�⌧q

k.
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e. e

r -

- e ⇒ Go = 1

"O O
"

u

=Get

d)
'

c  EET
 l

k¥11
"

Introducing a

"

r = If
"

We apply this identity to the integral

p2⇡iqk

pk ´ 1q!⇣pkq

ª

F

fp⌧qgp⌧qG
k´l

p⌧qyk
dx d y

y2

“

ª

F

ÿ

�P
xp

1 1

0 1

qy

z SL2pZq
Imp�⌧q

kfp�⌧qgp�⌧q

dx d y

y2
.

Unfolding the domain of integration, i.e. interchanging the integral and the sum, leads to

8ª

0

1ª

0

fpx ` yqgpx ` iyqdxyk
d y

y2
“

8ª

0

8ÿ

n“1

a
n

b
n

e´4⇡nyyk´2 d y

“

pk ´ 2q!

p4⇡q

k´1

8ÿ

n“1

a
n

b
n

nk´1

l
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Proposition

Let fp⌧q “

∞8
n“1

a
n

qn be a Hecke Eigenform of weight k. Then we have

8ÿ

n“1

a
n

�
k´1

pnq

ns

“

Lpf, sqLpf, s ´ k ` 1q

⇣p2s ` 2q

Proof: Use the Euler product & a
n

P R ... l
For example we get

p�, G
4

G
8

q “ ˚

Lp�, 11qLp�9q

⇣p6q

this will be used for the Theorem of Eichler-Shimura-Manin.
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