Theorem (Dimension formula)

For an even positiver integer k we have

|
|

Proof: This will now follow by induction on & from the results in previous Proposition. For k < 12
the above dimension formula is already proven. Combing the results of previous Proposition we
have

|+1 , k#2 mod 12

dime My, = .
e Ak { | , k=2 mod 12

Sl Sl

Myy12 = CEpr12 @A - My,

and since | 15| + 1 = [ %532 the statement follows inductively.

k 0(2|4|6|8|10 |12 |14 | 16 | 18 |20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36

dimeMg |[1|o]|1]1|1]| 1| 2|1 ]|2]|2|]2|2|3|2|3|3|3]|3]4

Figure : Dimension of M foreven 0 < k < 36.

O[S

Hurwitz Identity

E2, Eg € Mg. Since dimg Mg = 1 there must exists a ¢ € C with £ = cEg. But since
both have 1 as the constant term in their Fourier expansion we deduce ¢ = 1. Hence

Both E% and E2 are modular forms of weight 12 having 1 as the constant term in their Fourier
expansion and therefore Eﬁf - Eg € S12. By the last Proposition v) this has to be a multiple of
A and comparing the first few Fourier coefficients gives

E4(7)% — Eg(7)2

In general every modular form can be written (uniquely) as a polynomial in 4 and Fg:
Proposition
Fork > 0,the set {ESEL | a,b > 0,4a + 6b = k} is a basis of the space Mj.

Proof: We first check that the mentioned set has the correct size. Let N be the number of
solutions to 4a + 6b = k in nonnegative integers @ and b. For k < 12 one can check directly
that N, = dimg M, (given in the above theorem) and for k£ > 12 one can check that

Ny = Ni_12 + 1. Therefore we have N, = dimg My, for all k. It remains to show that the
set is linearly independent. Suppose we have a relation of the form

D AasEa(r)Eg(r)" =0

4a+6b=k
a,b=0

for all 7 € HL. If there is a pure Ey term, say Aq,0E4(7)%, then setting T = ¢ shows
Aa,0E4(3)* = Osince Eg(i) = 0. Since E4(i) # 0 (again by the valence formula) we
deduce Aq,0 = 0. Therefore all nonzero terms in the sum have b > 1. As Ej is not identically
0, we can divide by it and get

D1 AapEa(r)"Eg(r)"" 1 =0,

4a+6b=k
a,b=0

which is a linear relation in weight & — 6. By induction we see that the remaining coefficients are

0.
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Algorithm

Starting with a modular form f = Zfzo anq™ € Mj, and choosing a and b with 4a + 6b = k,
we have
f—aoE$EL € S.

We have shown Sy, = A - My_19,i.e. wefinda g € My_1o with f = aoEfng +A-g.
With the explicit expression
E} — E§

1728
of A, this gives a recursive algorithm (and in fact another way of proving the above Proposition)
to write f as a polynomial in 4 and E.

A =




Proposition
The modular forms F4 and Ejg are algebraically independent over C. J

Proof. Let P € C[X, Y] be with P(E4(7), Eg(7)) = 0 for all 7 € H. Since the weight gives
a grading we can reduce this to the case where P(E4, E()‘) is a sum of modular forms of the
same weight k. But we know that £ % with 4a + 6b = k are linearly independent and
therefore we conclude P = 0. O
Summarizing all the results we get the following description of the space of modular forms.

coctary | [180YE 121

Let M denote the space of all modular forms (of level 1), then we have

o0
M = @ My = C[E4, Eg] = C[X, Y],
k=0

i.e. M is a graded C-algebra, which is isomorphic to the polynomial ring in two variables.
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Derivatives and quasi modular forms

Let f = Zf:o a,q" be a modular form, then we write for its holomorphic derivative w.r.t. 7

o Ld de
U 2mi dt —qdqfonanq.

n=1

Here the factor 277 has been included in order to preserve the rationality properties of the
Fourier coefficients.

Proposition

The derivative of a modular form f € Mj, satisfies for all (‘; g) € SLo(Z):

il (Z:IZ) = (cr + A2 f/ (1) + %c(w + AR Lf(r).

Idea of proof: a straightforward calculation [l

Definition

For a modular form f € M}, we define the Serre derivative by

ouf = ' = = Baf

Proposition

For a modular form f € M}, we have Ok f € Mjo.

Proof: We set g(7) = f'(7) — %E2(T)f(7'),we obtain for (2 4) € SLy(Z)
ar+b\ , (ar+Db k at +b at +b
g(c7’+d> =/ (cr+d) 7EE2 (CT+d)f<CT+d>

= (er + )2 f (1) + iC(CT +d)F L f(T)

27
- ((CT A Ey(r) — Sicer + d)) (cr + )" f(7)
T
k
~(er 4 )7 (1) = BB ) = (e + ).
Since g is also holomorphic in H and at co we obtain g € M, ;2. [l

Definition

The ring of quasimodular forms is defined by M= C[E2, E4, Eg).

Proposition «pr Q) R, o QQL"\Q&[LL

Jew’
The ring of quasimodular forms is closed under differentiation and we have < 4
oy A
E:-FE EyEy — E EsEs — E
Eé _ ] 4 , E/ _ 2194 6 , E/ _ 216 4
12 3 2

Proof: We have

04E, = Ej — %EQEAL e Mg, 20 %{‘C = 7%7

1
06E6 = Eé — §E2E6 € Mg.

Since both spaces are one-dimensional with basis Fg and Ef respectively we get the second
and third equation after comparing the first Fourier coefficients. Using again the modularity
formula of F» and a straightforward calculation (as in the proof of modularity for 0y) we find

1
E, — EE% € M.

Therefore this is also a multiple of E4, which turns out to be —1—12 by comparing the Fourier
coefficients. .,



Modular forms and L-series

Qutlock

The L-series attached to modular forms have many nice aspects ("motivic","automorphic",...). We
will study here just some of their basic properties.

We first study the growth of the Fourier coefficients a,, of f(7) = >, anq"™ € My wrt. k.
Proposition

Let f(7) = Gk(7), then there are A, B € Rwith A > 1 and B < ((k — 1)such that

An* ! < a, < BnF L.

Proof: We have

= B% "FZUk 1 ,

where oj,—1(n) = > g, d*=1. Clearly n*~! < g1,_1(n). In addition we have,

an, og—1(n) d’C !
k-1 = k-1 del\de1=C(’f—1)- O

d\n d|n

Theorem (Hecke bound)

It f =251 anq" € Sk, then a,, € O(n?).

4Here the "Big-O-Notation" means that ‘ | is bounded for n — 0.

n2

Proof: We will show |an\ Kn® with a suitable constant k = k( f). The k-th Fourier
coefficient of f is given by

1
= ff(T)ef%"” dz (7t =2z +1iy).
0

Hence |a, | < €*™ supg<,<; |f(z + iy)|. Weset | /() = | f(7) |y%, then
ocA -
I1267) = 112(7) g Ve
for all v € SLyo(7Z) and therefore = 7/

swp [f|(7) = swp fI(7). %VLL

TeSLy (Z)\H

Since f € S}, we have in addition

TIET;O HfHQ( hm < Z anq ! y ) (|q2| Z anqn—1’2wyk>

n=1 n>=1
= lim (e”*"™y*)a, = 0. 7
T—00
Hence || f||(7) is bounded on H and thus we have a maximum LA/

¢f = max| f|(r),

which in turn yields

|f(z +iy)| = [ £I(r)y~ % < cpys.

k
Now we always have |a,,| < €2™™Yy~2 ¢y and in particular this holds for y = % We conclude

11\ 2 k
lan| < ¥ (7) cf = kKn2.
n

Remark
o If f € My, then a,, = O(n*). Only for f € Sy we have the bound O(n% ).
@ The bounds for f € S, are far from beeing optimal, indeed it holds
an = (’)(n%)ag(n).

This very deep result follows from Deligne’s proof of the Weil conjectures. He was able to
connect the Fourier coefficients to the number of points of certain varieties mod p.




Definition
The L-series of a modular form f(7) = Zn>1 an,q"™ € Sy is defined to be the Dirichlet-series
given by

a

0
L(f,s) =) —»  seC.
n=1

Theorem (Hecke) ///

i) L(f,s) converges for Re(s) > & + 1 to a holomorphic function-

iy L(f, s) has a holomorphic continuation to the whole of C and satisfies

equation. Set R(f,s) = (2m) °T'(s)L(f, s), thenforall s € C /‘
R(f,k—s) = (~1)2R(f, ). —

. o

k
Proof: i) By the Hecke bounds |a,,| < kn2 we have
- . k_
‘ann s| _ |a"‘n Re(s) < kn?® Re(s)'

As((s) = Dy L converges absolutely for Re(s) > 1 we deduce L(f, s) converges
absolutely for Re(s) > & + 1.

ii) We first recall

0
I'(s) = j t*le7tdt
—00

3
[

0
—5 (QW)SF(S)_lfts_le_%-ntdt
0

This yields for L(f, s)

n=1 n=1

L(f’ 8) = Z annis = Z an(27|')s]:‘(5)71 Jtsflef%rnt dt
0

= (2m)"T(s)~ " [ o1 2 ane ™ dt

n=1

= (2m)°T(s)~" | 71 fit) d t.

O——g °——38

Observe L( f, s) is nothing else than what is also called a Mellin-transform.

We further get
1

et dt = [ e Gt d e+ | e ) de
Jrs]

0 @) s

(=1)2 k=51 f(it) dt + fts’lf(it) dt
1

(2m)"°T(s)L(f,s) =

Il
me——g "——g§ "——g °——3

(R}

((—1)%&’“—5—1 + ts—l) flit)dt = f&(s,t)f(it) dt.

Since £(k — s,t) = (—1)2&(s, t) we deduce the functional equation
R(f,k=5) = ()2 R}, 5).

0

Moreover since (2)* and I'(s) ™! are holomorphic and since § £(s, ¢) f(it) d ¢ has a
1

holomorphic continuation the last claim follows.



Remark

@ The functional equation for L( f, s) is a direct consequence of the modular transformation

w.rt. S of f.

@ Conversely there is a famous theorem of Weil: A L-series L(s) with a functional equation
L(s) = L(k — 8)2'(8) equals L( f, s) for some modular form f, if L(s) has certain
growth properties along vertical stripes.

@ The functional equation for the Riemann zeta function is proven along the same path, more
precisely one uses that the 9)-function is a modular form for a subgroup of SLQ(Z).
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Motivation: The Riemann zeta function has an Euler product

1 1
C(S):glgz Hm7

P prim

as we have the geometric series expansion

Question
Which of the L-series L( f, s) do have an Euler product, i.e. have the shape

L(1.5) = J[ L 1)
p=p

for some rational functions Ly, ( f, s) ?

Answer: Hecke eigenforms will do.

Definition (Hecke operator)

Forn = 1 we define

T(n)f(r) =n*' Y d"f (‘”T*b> .

az1, ad=n
=1, a e
o=b=d (2o )
Y 7
Proposition
(i) It f € My, thenT'(n)f € My. In particular, if f(7) = Y, - ang™ with g = €™,
then e
(ve}
T(n)f(r) = ), Ymq™
m=0
with
Yin = d*ang
d|(n,m)
d>1
(i) We have
T(m)T(n)f = T(mn)fa if (na m) =1

T(p)T(pP")f =TE" ) f+p" T ") f, itpprimeandn > 1.

Idea of Proof: Clearly T'(n) f is holomorphic on H. Let
M, ={(2%) € Matz2(Z) | ad — bc = n },
then SLo(7Z) acts by multiplication from the left and

SL(Z)\M, = { (g Z) lad=n, a,b,deZ, 0<b<d}.

Hence

T(n)f(r) =nF > (er+d)7Ff <aT + b>

+d
(@b)esLay(z)\n, 7

and the sum is unchanged if we replace ( a 3) by ’y( e Z) with some v € Slo (Z) Therefore
T'(n) f satisfies the modular transformation property.
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It remains to show that 7'(n) f is holomorphic at co: We have

o0
T@fm) =n*"t 3 A7 3] anetm
ad=n m=0
a=1,0<b<d
Using
Z e27rim% _ d, d\m
o<b<d 0, sonst
Replacing m by md = mn/a and using n/d = a, we find
T(n)f(T) = Z 2 akila%q“m _ Z Z dk*la%q'rn.

meZ ad=n,a=1 meZd|(m,n)
d=1

Hence for m < 0 we get 7, = 0, and therefore T'(n) f is holomorphic at o0.

(i) see reference, e.g. F. Martin & E. Royer, FORMES MODULAIRES ET PERIODES. [

Proposition
The Hecke operators act on M}, and on Sj. }

Proof: With above notation we have g = o;—_1(n) ag. If f € Sk, then ag = 0 and therefore
T(m)f = > vmq™ is also a cusp form since o = 0. O
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WFB CHUANL M/L/w/,gwe

Definition (Hecke algebra)

6 vo %
We denoté by T the algebra generated by T'(n) for all n € IN.

Rema

There/are other ways to approach Hecke operators, namely double cosets, correspondences of
latticés or via pullback and pushforwards maps between modular curves. Outstanding results rely
deep connections of the Hecke algebra to arithmetic questions (e.g. Mazur’s theorem on torsion
subgroups of rational &lliptic curves, Wiles’s proof of Fermat’s last theorem,...)

QOLIV [a%,@g
&A'o/@

51/102

Proposition (Some linear algebra)

Let T be a finite dimensional, commutative C-algebra. Let V' # 0 be a finite dimensional
C-vector space and T < End (V). Then there exists a simultaneous eigenvector v € V for all
TeT.

Proof: There exists a finite set of generators 11, ..., T, of T, as dim V' < c0. Since the
characteristic polynomial of T has a zero, we have an eigen space 0 = Vi < V for T7. It
suffices to show T;V; < Vj. Forallv € V; we have T1v = A\jv and we get

T1 (TZU) = Ti(Tﬂ)) = Ti/\ﬂ] = )\I(Tﬂ)).

Hence T; V7 < V; for all T;.

We repeat this procedure for T5 as operator on V; and obtain an eigen space Vo < V| < V for
T5 with T; Vo < Vo forall 7.

After finitely many steps we obtain an eigenvector v,, # O forallT" € T. O

Observe T(n) are endomorphisms of the vector spaces M}, and Si. We a searching for
modular forms that are eigenfunctions for all 7'(n):

Definition
A modular form f € My, f # 0, which is an eigenform for all T(n) is called Hecke eigenform. If

in addition a1 (f) = 1, then f is called normalised Hecke eigenform. Some authors also use
solely eigenform or Hecke form.

Theorem (Hecke eigenforms)

Let f(7) = Y] anq™ be a modular form with 7'(n) f = A(n) f foralln € IN (f is called a
eigenform), then

() a1 =ai(f) #0

(i) If f is normalised, then a,, = A(n).

Proof: The coefficient v, of T'(n) f equals a,,, and by assumption y; = A(n)a1, hence

an = A(n)ay. O
Any simultanous Hecke-Eigenspace is one dimensional, since for f, g € M, with

T(n)f =A(n)fand T(n)g = A(n)g we get f = kg for some € C.
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Corollary

If f = a,q™ is a normalised Hecke eigenform then

Anlpm = Anm for (n,m) =1
Aplpn = Qpn+1 +pk71apn71 if p prime andn > 1.
Proof: This follows from the recursive properties for the Hecke operators. [l

Theorem

The L-series L( f, s) of a normalised Hecke eigenform has a Euler product

1
L(f,s)= Y ==
(fvs) ns Hl_ap—s+pk 1-2s

n=1 P prim
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Proof: The series {an}nem given by the Fourier coefficients of f determines a multiplicative
function a : IN — C, n — a,,. For any such multiplicative function we get

s) = H Z apnp "

peP n=0

If we set T' = p~*, we have to check

e 1
apnT" = ——m |
r;o P 1—apT +pr—1T?

But this is equivalent to the identity we have seen before

0 0
1= (1—a,T +p* 1% Z apnT" =1+ Z (apn — ApQpn—1 +pk71apn72) ™.
n=l W
= QPCW

(-/( °4 H(c@({ @'V‘ﬂ)ﬂ»«/

55/102

O

Ty [ove Comregnan,
Theorem (D/eée'\’%, 9”““/‘4\( -

The cusp form
(0]
H 1—-gm™ = T(n)g™ € Si2

ist is a normalised Hecke eigenform.

v

Proof: Obvious, since dim S15 = 1. 0

Remark
By the above theorem we have that T(n) is a multiplicative arithmetic function. For example we
have
7(2)7(3) = —24 - 252 = —6048 = 7(6)
7(2)% = 576 = —1472 + 2048 = 7(4) + 2'.

y

Woﬂuf[(eéyw) CUINF O ;)@?g/fé
Talood wplo very lasse s (v Digits)

Theorem
(i) The Eisenstein series

is a Hecke eigenform.
(i) G has the L-series

L(Ges) = 3 22 _ (o)g(s -+ 1),

s
1 n

n

Proof: (i) It is straightforward to show that 0,1 is a multiplicative function satisfying the required
recursive property for prime powers, i.e.

-1(n) or—1(m) = o1 (nm) for (n,m) =1
ok-1(p) ok-1(p") = Uk—l(PnH) +p" o (Pnil) if pprimeandn > 1.
(i) We get
S 7k-1(n)
1;1 T = a;l asds Z ;1 as— k+1 = (S)C(S -k + 1) O
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Examples

03(6) =1+2%+3% + 6% = (1 +22) (1 +3%) = 03(2) 03(3)
03(2%) =1+2% + 43 + 8% = (1+2%) (1+2%+4%) —2° (1 +2%)
= 03(2) 03(4) — 2%03(2)
ar(p) ou(®@") = o (p" ) + pror(p" ) .

Observe we had not use the fact that k is odd!
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We can naively search for eigenforms. For example Sa4 is a two dimensional C-vector space
spanned by

2
o0
A%(7) = (q [Ja- q")24> =¢* — 48¢° + 1080¢* + - --
n=1
A(7)(240G4)3 () = q + 696¢> + 162252¢° + 12831808¢* + - - -
Any normalised eigenform f € So4 must equal
f = (240G4)2A(1) + MA(T)?

forsome A € C. fT'(2) f = uf, then

Since as = 696 + X and a4 = 12831808 + 1080 we get that \ is a root of
3
A+ 3 — 20736000 = 0.

Therefore f is a Hecke-Eigenform if and only if

f = (240G4)3A + (156 + 124/14469) A2

Corollary

There are Hecke-eigenforms in M. resp. Sk.

Actually we aim for more

Proposition
If (V, {, )) is a hermitian C-vector space and if T € End (V') is self-adjoint, i.e.

(Tv,wy = {v,Twy foralv,weV,

then V' has a basis given by eigenvectors for 7T".

Thus we need to find a hermitian scalar product on S}, s.t. the Hecke operator 7'(n) are
self-adjoint.

Theorem (Petersson)
If f,g € Sk, then
—— pdaxd
G- [ et

F=SLy(Z)\H

defines a positive definite hermitian scalar product on Sk. It is called the Petersson scalar product

Proof: We have to check
o well-definededness for (, ) : S x S — C.
o (v, AWy + piws) = Mwy,wi) + i{vy, wa)
o (v,w) = {w,v).

e {, )is positive definite, i.e. {v,v) = 0 and (v, v) = Oifand only if v = 0.

Only the first claim needs some detailed justification.



At first we see that the integrand is SLo (Z)-invariant, indeed

b
() < v
“rat +by —
() - vt
Im(::is) =|er +d|” " Im(7)

Hence

H(era)o(G) m(5g) = e

Furthermore we have

ar +b 9
d(w—i—d) (et +d)2dT

()

d(%ﬁ)d@ drd7 _ dzdy

= =2
hn(m—is) Im(7)2 y2

(et +d)2dT,

and

at+b
ct+d’

Therefore the integral is invariant under the modular transformations 7 +—

The integral exists:

n 2minx ,—27n —27szz —2mm
= Z anq Z bmqm = (Z an€ € y) ( Z m€ rm Y

n=1 m=>=1 n=1 2
Z anbpe 4™ 4+ Z with 27 terms*
n=1
We now cut the Fundamental domain F at the line y = Tj. A
dxdy dxdy dtdy
Y Y Y
f fr ff | .

For the bounded domain A the integral exists by continuity of the integrand. Because of
frg(r)=--= Zanae%”"y + terms with e2™™®

we get for all m € Z\{0}, using h(y)e2Time = (),

—3<z<3§
dxdy — pdzdy
Yk . k
=1
j fir N T
—3<z<3}
To<y<Ti
[e¢]
T —Arny, k—2
= T}IE,HOC j Z anb Yy d’lj,
To<y<Th n=1

For the remaining integral we get

Zanmedmny =4y (Z anaeﬂ"("’l)y) = g4y (a@ + azby + - ) .

Because of the Hecke-bound for the growth of the Fourier coefficients the sum is bounded, thus

lim Z Anbpe ™Yy "2dy < lim & e 4y 2 Aty < o0.
T1— T1—0
To<y<T: To<y<Th

We conclude that Petersson’s scalar product is well-defined. O

)



Theorem (Petersson, Hecke)

The Hecke operators are self-adjoint w.r.t. the Peterson scalar product, i.e.,

(T(n)f,g) =<f,T(n)g)
foralle T'(n) € T(Sk) and f, g € Sk.

Proof: This a long calculation, we refer to the literature.
_

C nces from linear algebra

Mas an orthonormal basis given by Hecke- eigenforms. B

@ The Fourier coefficients of normalised Hecke eigenforms are real-algebraic numbers, since
for any self-adjoint operator F’ with eigenvector v we get

M, vy = (Fv,v) = (v, Fv) = X, v),

hence A = .

Theorem
We have a bilinear and non-degenerate pairing
Mk X T(Mk) — C
(f7 T) g al(Tf)

Proof: The pairing is clearly bilinear. We have to show, if a1 (T}, f) = 0 forall n € IN then we
must have f = 0. If a1 (T'(f)) = Oforall f € M}, then we have for all n and all f

al(TTnf) = al(Tn(Tf)) = an(Tf) =0.
Therefore T'f = 0 for all f, which impliesT" = 0. O

Corollary
The map

Mk — Homc(T(Mk),C)
f= (T = a(T(f)))

is an isomorphism of T'( M}, )-modules.

Of practical use? is the converse direction: Is ¢ € Home (T'(M},), C), then we get the modular
form

For example, if

then o(T') = a;;(T) € Hom(T, C).

2e.g. application in SAGE as descripted in the notes by W. Stein.

Rankin-Selberg method

For the Eisenstein series we have a decomposition

(k=D 1 k-1 G 1 1
Gr = (2mi)F Emzm (mr +n)k — (2mi)k 52@ 2 (mt + n)k

This works because of Euklid’s lemma: For every (c, d) € Z2 with (c,d) = 1 there exista
(2%) € SLa(Z). Given such a solution, then

(o 1) o= ("1 "5

gives the equation(a + ¢)d + (b + d)c = 1. Ifwe plugm = cand n = dinto G, then we
derive
(k—1)1 1
S L B
Ci (2mi)F 5¢(k) 2 (cm + d)*
(GIN(¢§)esta@
S Porabelic subortry



Theorem (Rankin-Selberg unfolding)
ZOO bmq™ € M. Then, if k — [ > 2 we have

Let f(7) = Zle anq" € Spand g(7) = > _( bm
294

for the Petersson scalarproduct
k—2)! & and,
f(7),9(1)Gri(7)) = T P

2=¢ = G6,=1

Proof: By definition we have
cdrdy

(), 9(r)Gra(r)) = ﬁf 7@ -

Because of above notation we get for the integrand

Cri) Gyt

(k= 1)) p
= ct + d))f (7)(er + d) g(T 71/9

) (er + d)Jf (T)(eT + d) ()|(CT+d)|2k /
-\

F(yr)grm) Im(yr)* (e el )* cetad) © €Fvd)
cref

- 3

Ir

ve{ (3 1))\ SL2(2) TR /,1 ‘
9 T Crra o0

We apply this identity to the integral

27rz
*1'C .[f 9(m)Gri(T)y

_ f 5
Fe((§ 1))\SL2(2)

Unfolding the domain of integration, i.e. interchanging the integral and the sum, leads to

pdo

Im(y7)* f(y7)g(y7)

1 0
pd S

Jf z +y)g(z + iy) day y—y = J Z Anbpe T yF=2 4y

0 n=1

— =—s
\
=
\:-]/
E
L
3
L
S
e
L

LGy b,

Proposition

Let f(7) =

ZZ) 1 @nq™ be a Hecke Eigenform of weight k. Then we have

i anop-1(n) _ L(f,8)L(f,s —k +1)
= C(2s +2)

nS

Proof: Use the Euler product & a,, € R ...
For example we get

L(A,11)L(A9)
A,GyGg) = ———————=
( {©

this will be used for the Theorem of Eichler-Shimura-Manin.



