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multiple divisor functions
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1

, ..., s
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1

(s1�1)!...(sl�1)!
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d1,...,dl>0

d

s1�1

1

. . . d

sl�1

l

q
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dq
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1
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12
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4
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multiple zeta values
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l
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Z

k
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[3], [4], d[3] 2 kerZ
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Multiple zeta values

Definition
Let s

1

� 2, s
2

, ..., s

l

� 1 be natural numbers, then we call sums of the type

⇣(s
1

, ..., s

l

) =
X

n1>...>nl>0

1

n

s1
1

. . . n

sl
l

a multiple zeta value (MZV) of weight s
1

+ ...+ s

l

and depth l.

The product of two MZV can be expressed as a linear combination of MZV with the same
weight (stuffle relation). e.g:

⇣(r) · ⇣(s) = ⇣(r, s) + ⇣(s, r) + ⇣(r + s) .

MZV can be calculated by iterated integrals. This gives another way (shuffle relation) to
express the product of two MZV as a linear combination of MZV.

These two ways to express products give a lot ofQ-relations between MZV (double shuffle
relations).
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Multiple zeta-values

Example:

⇣(2, 3) + 3⇣(3, 2) + 6⇣(4, 1)
shuffle
= ⇣(2) · ⇣(3) stuffle

= ⇣(2, 3) + ⇣(3, 2) + ⇣(5) .

=) 2⇣(3, 2) + 6⇣(4, 1)
double shuffle

= ⇣(5) .

But there are more relations between MZV. e.g.:

⇣(2, 1) = ⇣(3).

These follow from the "extended double shuffle relations" where one use the same combinatorics
as above for "⇣(1) · ⇣(2)" in a formal setting. The extended double shuffle relations are
conjectured to give all relations between MZV.
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Let A
z

be a finite alphabet {z
1

, z

2

, z

3

, ...}. A word is an ordered sequence w = z

i1 ...zil of
elements taken from A

z

, with repetition allowed. We include the empty word ; (or 1). We use the
concatenation product w · w0 and denote by A⇤

z

the set of all words. We take A⇤
z

as a basis of
the vector spaceQ < A

z

> of noncommutative polynomials. The concatenation of words
defines by linearity a multiplication onQ < A

z

>.

Definition
The stuffle product ⇤ onQ < A

z

> is defined by linear extension of the recursion given by

1 ⇤ w = w ⇤ 1 = w

for all w 2 A⇤
z

and for words w,w0 and letters z
1

, z

j

by

z

i

w ⇤ z
j

w

0 = z

i1 · (w ⇤ z
j

w

0) + z

j

· (z
i

w ⇤ w0) + z

i+j

· (w ⇤ w0).

Proposition (Hoffmann)

The algebra
�
Q < A

z

>, ⇤
�

is a commutative and associativeQ-algebra.

The stuffle product is an example for a quasi-shuffle product.
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Definition
We denote by MZ 2 R theQ-subalgebra generated by multiple zeta values.

Theorem (Hoffmann)
There is a unique homomorphism ofQ-algebras

⇣

⇤ :
�
Q < A

z

>, ⇤
�
! MZ

such that ⇣(z
1

) = 0 and for all words w = z

i1 ...zil with i
1

� 2

⇣

⇤(z
i1 ...zil) = ⇣(s

i1 , ..., sil).

Remark

There is also a similar homomorphism ⇣

9

:
�
Q < {x, y} >,

9 � ! MZ which can be used

to describe the shuffle product. The comparison of ⇣⇤ and ⇣

9

, then leads to the extended
double shuffle relations.
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Dimension conjectures for MZ
Consider the formal powerseries

E
2

(x) =
x

2

1�x

2 = x

2 + x

4 + x

6 + ... "even zetas",

O
3

(x) =
x

3

1�x

2 = x

3 + x

5 + x

7 + ... "odd zetas",

S(x) =
x

12

(1�x

4
)(1�x

6
)

= x

12 + x

16 + x

18 + ... "period polynomials".

Broadhurst-Kreimer Conjecture
TheQ-algebra MZ of multiple zeta values is a free polynomial algebra, which is graded for the
weight and filtered for the depth ("depth drop for even zetas"). The numbers g

k,l

of generators in
weight k � 3 and depth l are determined by

BK(x, y) =
X

k,l�0

dimQ
⇣
grW,D

k,l

MZ
⌘
x

k

y

l =
⇣
1 + E

2

(x) y
⌘ Y

k�3,l�1

1�
1� x

k

y

l

�
gk,l

where

BK(x, y) =
⇣
1 + E

2

(x)y
⌘ 1

1� O
3

(x)y + S(x)y2 � S(x)y4
.

7 / 39

H
,!

QE 31213 )

Dimension conjectures for MZ

Zagier’s Conjecture
The following identities hold:

Zag(x) =
X

k�0

dimQ
⇣
grW

k

MZ
⌘
x

k =
1

1� x

2 � x

3

.

Zagier’s conjecture is implied by Broadhurst-Kreimer’s conjecture. In order to neglect the depth
we just have to set y = 1 and get

Zag(x) = BK(x, 1) =
1 + E

2

(x)

1� O
3

(x)
=

1 + x

2

1�x

2

1� x

3

1�x

2

=
1

1� x

2 � x

3

.

Brown’s Theorem
TheQ-vector space of multiple zeta values is spanned by the "23"-MZV’s, e.g. by those
⇣(s

1

, ..., s

l

) with s
i

2 {2, 3}.

By Brown’s theorem the dimensions in Zagier’s conjecture are the maximal possible ones.
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Theorem (Gangl&Kaneko&Zagier)

(i) The values ⇣(odd, odd) of weight k satisfy at least dimS

k

linearly independent relations,
where S

k

denotes the space of cusp forms of weight k on Sl
2

(Z).

(ii) For each even period polynomial an "exotic" relation as in (i) can be constructed.

Example. For k = 12 and k = 16, i.e. the first weights for which there are non-zero cusp forms,
we have the identities

28⇣(9, 3) + 150⇣(7, 5) + 168⇣(5, 7) =
5197

691
⇣(12)

66⇣(13, 3) + 375⇣(11, 5) + 686⇣(9, 7) + 675⇣(7, 9) + 396⇣(5, 11) =
78967

3617
⇣(16).
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Multiple q-zeta values

Many of the most basic concepts in mathematics have so-called q-analogues, where q is a formal
variable such that the specialisation q = 1 recovers the usual concept. Attributed to Gauss are the
q-integers

{n}
q

= 1 + q + . . .+ q

n�1 =
1� q

n

1� q

.

We will study the following q-analogues of multiple zeta values.

Definition [(modified) multiple q-zeta-value]

For s
1

, . . . , s

l

� 1 and polynomials Q
1

(t) 2 tQ[t] and Q
2

(t) . . . , Q
l

(t) 2 Q[t] we define

⇣

q

(s
1

, . . . , s

l

;Q
1

, . . . , Q

l

) =
X

n1>···>nl>0

Q

1

(qn1) . . . Q
l

(qnl)

(1� q

n1)s1 · · · (1� q

nl)sl
2 Q[[q]].

Such series can be seen as a q-analogue of multiple zeta values, since we have for s
1

> 1

lim
q!1

(1� q)s1+···+sl
⇣

q

(s
1

, . . . , s

l

;Q
1

, . . . , Q

l

) = Q

1

(1) . . . Q
l

(1) · ⇣(s
1

, . . . , s

l

) .

Observe, just replacing n by {n}
q

in multiple zeta values will not work.
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Multiple Eisenstein series
Let ⇤

⌧

= Z⌧ +Z be a lattice with ⌧ 2 H := {x+ iy 2 C | y > 0} and

P := {m⌧ + n 2 ⇤
⌧

| m > 0 _ (m = 0 ^ n > 0)} = U [R

m

n

R

U

We call P the set of positive points and we define an order � on ⇤
⌧

by

�

1

� �

2

:, �

1

� �

2

2 P

for �
1

,�

2

2 ⇤
⌧

.
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Multiple Eisenstein series

Definition
For s

1

� 3, s
2

, . . . , s

l

� 2 we define the multiple Eisenstein series of weight
k = s

1

+ · · ·+ s

l

and depth l by

G

s1,...,sl(⌧) :=
X

�1�···��l�0

�i2⇤⌧

1

�

s1
1

. . .�

sl
l

.

G

k

(⌧) with even weight k are the classical Eisenstein series.

G

s1,s2(⌧), i.e. the depth l = 2 cases, are due to Gangl, Kaneko and Zagier.

general multiple Eisenstein series are considered first by Bachmann.

The multiple Eisenstein series have a Fourier expansion

G

s1,...,sl(⌧) =
X

n�0

a

n

q

n

, (q = e

2⇡i⌧ )

since G
s1,...,sl(⌧ + 1) = G

s1,...,sl(⌧), but in general they are not modular.

Question: What can we say about the Fourier coefficients a
n

?
12 / 39

how ok for
← all e c- a !



Multiple Eisenstein series - Fourier expansion, preliminaries

To calculate the Fourier expansion we rewrite the multiple Eisenstein series as

G

s1,...,sl(⌧) =
X

�1�···��l�0

1

�

s1
1

. . .�

sl
l

=
X

(�1,...,�l)2P

l

1

(�
1

+ · · ·+ �

l

)s1(�
2

+ · · ·+ �

l

)s2 . . . (�
l

)sl

We decompose the set of tuples of positive lattice points P l into the 2l distinct subsets
A

1

⇥ · · ·⇥A

l

⇢ P

l with A
i

2 {R,U} and write

G

A1...Al
s1,...,sl

(⌧) :=

X

(�1,...,�l)2A1⇥···⇥Al

1

(�

1

+ · · ·+ �

l

)

s1
(�

2

+ · · ·+ �

l

)

s2
. . . (�

l

)

sl

this gives the decomposition

G

s1,...,sl =
X

A1,...,Al2{R,U}

G

A1...Al
s1,...,sl

.

In the following we identify the A
1

. . . A

l

with words in the alphabet {R,U}.
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Multiple Eisenstein series - Fourier expansion, depth=1

In depth l = 1 we have G
k

(⌧) = G

R

k

(⌧) +G

U

k

(⌧) and

G

R

k

(⌧) =
X

m1=0

n1>0

1

(0⌧ + n

1

)k
= ⇣(k) ,

G

U

k

(⌧) =
X

m1>0

n12Z

1

(m
1

⌧ + n

1

)k
=

X

m1>0

 
k

(m
1

⌧) ,

where 
k

is the so called monotangent function defined for k > 1 by

 
k

(x) =
X

n2Z

1

(x+ n)k
.

To calculate the Fourier expansion of GU

k

one uses the Lipschitz formula.
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Multiple Eisenstein series - Fourier expansion, depth=1

Proposition (Lipschitz formula)
For k > 1 it is

 
k

(x) =
X

n2Z

1

(x+ n)k
=

(�2⇡i)k

(k � 1)!

X

d>0

d

k�1

e

2⇡idx

.

With this we get

G

U

k

(⌧) =
X

m1>0

 
k

(m
1

⌧) =
X

m1>0

(�2⇡i)k

(k � 1)!

X

d>0

d

k�1

e

2⇡im1d⌧

=
(�2⇡i)k

(k � 1)!

X

n>0

�

k�1

(n)qn

=: (�2⇡i)k[k] ,

where �
k�1

(n) =
P

d|n d
k�1 is the classical divisor sum.
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Multiple Eisenstein series - Fourier expansion, U l-case
In general the GU

l

s1,...,sl
can be written as

G

U

l

s1,...,sl
(⌧) =

X

m1>···>ml>0

n1,...,nl2Z

1

(m
1

⌧ + n

1

)s1 . . . (m
l

⌧ + n

l

)sl

=
X

m1>···>ml>0

 
s1(m1

⌧) . . . 
sl(ml

⌧)

=
(�2⇡i)s1+···+sl

(s
1

� 1)! . . . (s
l

� 1)!

X

m1>···>ml>0

d1,...,dl>0

d

s1�1

1

. . . d

sl�1

l

q

m1d1+···+mldl

=:
(�2⇡i)s1+···+sl

(s
1

� 1)! . . . (s
l

� 1)!

X

n>0

�

s1�1,...,sl�1

(n)qn

=: (�2⇡i)s1+···+sl [s
1

, . . . , s

l

] .

We call the �
r1,...,rl multiple divisor sums and their generating functions

[s
1

, . . . , s

l

] 2 Q[[q]]

are called brackets.
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Multiple Eisenstein series - Fourier expansion, Rl-case

The other special case GR

l

s1,...,sl
can also be written down directly:

G

R

l

s1,...,sl
(⌧) =

X

m1=···=ml=0

n1>···>nl>0

1

(0⌧ + n

1

)s1 . . . (0⌧ + n

l

)sl
= ⇣(s

1

, . . . , s

l

)

What about the mixed terms in depth l > 1 ?
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Multiple Eisenstein series - Fourier expansion, depth=2

In depth 2 we have G
s1,s2 = G

RR

s1,s2
+G

UR

s1,s2
+G

RU

s1,s2
+G

UU

s1,s2
and

G

UR

s1,s2
=

X

m1>0,m2=0

n12Z,n2>0

1

(m
1

⌧ + n

1

)s1(0⌧ + n

2

)s1

=
X

m1>0

 
s1(m1

⌧)
X

n2>0

1

n

s2
2

= (�2⇡i)s1 [s
1

]⇣(s
2

) ,

G

RU

s1,s2
(⌧) =

X

m1=m2>0

n1>n2
ni2Z

1

(m
1

⌧ + n

1

)s1(m
1

⌧ + n

2

)s2
=

X

m>0

 
s1,s2(m⌧).

where we call 
s1,s2(x) =

P
n1>n2

1

(x+n1)
s1

(x+n2)
s2

the multitangent function of depth 2.
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Multiple Eisenstein series - Fourier expansion, depth=2

Using partial fraction expansion one can show that

 

s1,s2(x) =

X

k1+k2=s1+s2

 
(�1)

s2

 
k

2

� 1

s

2

� 1

!
+ (�1)

k1�s1

 
k

2

� 1

s

1

� 1

!!
⇣(k

2

) 

k1(x).

and therefore

G

RU

s1,s2
(⌧) =

X

m>0

 

s1,s2(m⌧)

=

X

m>0

X

k1+k2=s1+s2

 
(�1)

s2

 
k

2

� 1

s

2

� 1

!
+ (�1)

k1�s1

 
k

1

� 1

s

1

� 1

!!
⇣(k

2

) 

k1(m⌧)

=

X

k1+k2=s1+s2

 
(�1)

s2

 
k

2

� 1

s

2

� 1

!
+ (�1)

k2�s1

 
k

1

� 1

s

1

� 1

!!
⇣(k

2

)(�2⇡i)

k1
[k

1

].
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Multiple Eisenstein series - Fourier expansion, depth=2

Therefore we obtain

Proposition (Gangl-Kaneko-Zagier)
The Fourier expansion of the double Eisenstein series is given by

G

s1,s2(⌧) = G

RR

s1,s2
+G

UR

s1,s2
+G

RU

s1,s2
+G

U

s1,s2

= ⇣(s
1

, s

2

) + (�2⇡i)s1 [s
1

]⇣(s
2

)

+
X

k1+k2=s1+s2

C

k2
s1,s2

⇣(k
2

)(�2⇡i)k1 [k
1

] + (�2⇡i)s1+s2 [s
1

, s

2

] .

where

C

k2
s1,s2

:= (�1)s2
✓
k

2

� 1

s

2

� 1

◆
+ (�1)k2�s1

✓
k

2

� 1

s

1

� 1

◆
.
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Multiple Eisenstein series - Fourier expansion, word reduction

In the case GUR we saw that we could write it as GU multiplied with a zeta value.

In general having a word w of depth l ending in the letter R, i.e. there is a word w0 ending in U
with w = w

0
R

r and 1  r  l we can write

G

w

s1,...,sl
(⌧) = G

w

0

s1,...,sl�r
(⌧) · ⇣(s

l�r+1

, . . . , s

l

) .

Example: G

RUURR

3,4,5,6,7

= G

RUU

3,4,5

· ⇣(6, 7)

Hence one can concentrate on the words ending in U when calculating the Fourier expansion of
a multiple Eisenstein series.
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Multiple Eisenstein series - Fourier expansion, multitangent fct’s

Let w = R

r1
UR

r2
U . . . R

rj
U , then using multitangent functions one can write

G

w

s1,...,sl
(⌧) =

X

m1>···>mj>0

 

s1,...,sr1+1(m1

⌧) · 
sr1+2,...(m2

⌧) . . . 

sl�rj
,...,sl(mj

⌧) .

Definition
For s

1

, . . . , s

l

� 2 the multitangent function of depth l is defined by

 
s1,...,sl(x) =

X

n1>···>nl
ni2Z

1

(x+ n

1

)s1 . . . (x+ n

l

)sl
.

In the case l = 1 we also refer to these as monotangent function.

Let us consider an example...
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Example: Let w = RURRU , then a typical summand of GRURRU

s1,...,s5
is

1

(2+3⌧�5+1+2+⌧+1)

s1
(3⌧�5+1+2+⌧+1)

s2
(1+2+⌧+1)

s3
(2+⌧+1)

s4
(⌧+1)

s5
.

m

n

�

5

�

4

�

3

�

2

�

1

and therefore
G

RURRU

s1,...,s5
=

X

m1>m2>0

 
s1,s2(m1

⌧) 
s3,s4,s5(m2

⌧).
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Multiple Eisenstein series - Fourier expansion, multitangent fct’s

To calculate the Fourier expansion of such terms we need the following theorem which reduces
the multitangent functions into monotangent functions.

Theorem (Bouillot 2011, Bachmann 2012)
Let MZ

k

be theQ-vector space spanned by all MZVs of weight k. Then for s
1

, . . . , s

l

� 2
and k = s

1

+ · · ·+ s

l

the multitangent function can be written as

 
s1,...,sl(x) =

kX

h=2

c

k�h

(s
1

, ..., s

l

) 
h

(x)

with c
k�h

(s
1

, ..., s

l

) 2 MZ
k�h

.

Proof idea: Use partial fraction decomposition.
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Multiple Eisenstein series - Fourier expansion, general case

To summarize one can compute the Fourier expansion of the multiple Eisenstein series G
s1,...,sl

in the following way

Split up the summation into 2l distinct parts Gw

s1,...,sl
where w are a words in {R,U}.

For w being a word ending in R one can write Gw

s1,...,sl
as Gw

0

s1,...
· ⇣(. . . , s

l

) with a
word w0 ending in U .

For w being a word ending in U one can write Gw

s1,...,sl
as

G

w

s1,...,sl
(⌧) =

X

m1>···>mj>0

 
s1,...(m1

⌧) . . . 
...,sl(ml

⌧) .

Using the reduction theorem for multitangent functions this can be written as a MZV-linear
combination of sums of the form

X

m1>···>mj>0

 
k1(m1

⌧) . . . 
kj (mj

⌧) = (2⇡i)k1+···+kl [k
1

, . . . , k

l

]

for which the Fourier expansions are known.
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Multiple Eisenstein series - Summary and Examples

Theorem (Bachmann, master thesis 2012)
Multiple Eisenstein series are holomorphic functions on the upper half plane, which are
defined as a sum over ordered lattice points.

They have a Fourier expansion where the constant term is given by the corresponding
multiple zeta value and the remaining terms are rational linear combinations of products of
multiple zeta values and multiple divisor functions.

A few examples:

G

4,4

(⌧) =⇣(4, 4) + 20⇣(6)(2⇡i)2[2] + 3⇣(4)(2⇡i)4[4] + (2⇡i)8[4, 4] ,

G

3,2,2

(⌧) =⇣(3, 2, 2) +

✓
54

5
⇣(2, 3) +

51

5
⇣(3, 2)

◆
(2⇡i)2[2]

+
16

3
⇣(2, 2)(2⇡i)3[3] + 3⇣(3)(2⇡i)4[2, 2] + 4⇣(2)(2⇡i)5[3, 2]

+ (2⇡i)7[3, 2, 2] .
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Multiple Eisenstein series - some open questions

The multiple Eisenstein series fulfill the stuffle product, for example it is

G

4

(⌧) ·G
6

(⌧) = G

4,6

(⌧) +G

6,4

(⌧) +G

10

(⌧) .

This follows using the same combinatorial argument as in the MZV case, but the shuffle product

can’t be fulfilled because for example it is

⇣(4)⇣(6) = ⇣(4, 6) + 4⇣(4, 6) + 11⇣(6, 4) + 26⇣(7, 3) + 56⇣(8, 2) + 112⇣(9, 1)

and this equation does not make sense in terms of multiple Eisenstein series. In fact, because of
convergence problems we haven’t defined G

9,1

yet.

We have two options to define and study non convergent multiple Eisenstein series:

use analytical regularization (Bouillot and Bachmann)

use formal Fourier expansions (Bachmann-Tasaka, 2017)

The second approach was our motivation to study the brackets in its own.
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generating series for multiple divisor sums

Recall the multiple divisor sum is for any integers s
1

, . . . , s

l

� 0 defined by

�

s1,...,sl(n) :=
X

u1v1+···+ulvl=n

u1>···>ul>0

v

s1
1

. . . v

sl
l

.

and its generating series for multiple divisor sums are denoted by the brackets

[s
1

, . . . , s

l

] :=
1

(s
1

� 1)! . . . (s
l

� 1)!

X

n>0

�

s1�1,...,sl�1

(n)qn 2 Q[[q]] .

Example

[2] =
X

n>0

�

1

(n)qn = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + . . .

[4, 2] =
1

6

X

n>0

�

3,1

(n)qn =
1

6

�
q

3 + 3q4 + 15q5 + 27q6 + 78q7 + . . .

�
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Theorem (Bachmann-K.)

(i) TheQ-vector space MD has the structure of aQ-Algebra (MD, ·), where the
multiplication is the natural multiplication of formal power series, which is bifiltered w.r.t. the
weight and the depth.

(ii) The ring of quasi-modular forms is a subalgebra of MD
(iii) The multiplication is a (homomorphic image of a) quasi-shuffle algebra in the sense of

Hoffman.

The first products of multiple divisor functions are given by

[1] · [1] = 2[1, 1] + [2]� [1] ,

[1] · [2] = [1, 2] + [2, 1] + [3]� 1

2
[2] ,

[1] · [2, 1] = [1, 2, 1] + 2[2, 1, 1] + [2, 2] + [3, 1]� 3

2
[2, 1] .
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Multiple divisor functions - multiplicative structure
Idea of Proof: At first we rewrite the multiple divisor functions. For this we define a normalized

polylogarithm by

eLi
s

(z) :=
Li

1�s

(z)

�(s)
,

where for s, z 2 C, |z| < 1 the polylogarithm Li
s

(z) of weight s is given by

Li
s

(z) =
X

n>0

z

n

n

s

.

Proposition

For q 2 C with |q| < 1 and for all s
1

, . . . , s

l

2 N we can write the multiple divisor functions as

[s
1

, . . . , s

l

] =
X

n1>···>nl>0

eLi
s1 (q

n1) . . . eLi
sl (q

nl) .

We remark for later use that, by the definiton of eulerian polynomials P
s

(q) 2 Q[q],

eLi
s

(q) =
1

(s� 1)!

qP

s�1

(q)

(1� q)s

is in fact a rational function in q if s 2 N.
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Multiple divisor functions - multiplicative structure

The product of [s
1

] and [s
2

] can thus be written as

[s
1

] · [s
2

] =
X

n1>0

eLi
s1 (q

n1) ·
X

n2>0

eLi
s2 (q

n1)

=
X

n1>n2>0

· · ·+
X

n2>n1>0

· · ·+
X

n1=n2>0

eLi
s1 (q

n1) eLi
s2 (q

n1)

= [s
1

, s

2

] + [s
2

, s

1

] +
X

n>0

eLi
s1 (q

n) eLi
s2 (q

n) .

In order to prove that this product is an element of MD we will show that the product
eLi

s1 (q
n) eLi

s2 (q
n) is a rational linear combination of eLi

j

(qn) with 1  j  s

1

+ s

2

.
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Multiple divisor functions - multiplicative structure

Lemma
For a, b 2 N we have

eLi
a

(z) · eLi
b

(z) = eLi
a+b

(z) +
aX

j=1

�

j

a,b

eLi
j

(z) +
bX

j=1

�

j

b,a

eLi
j

(z) ,

where the coefficient �j

a,b

2 Q for 1  j  a is given by

�

j

a,b

= (�1)b�1

✓
a+ b� j � 1

a� j

◆
B

a+b�j

(a+ b� j)!
,

with the Bernoulli numbers B
n

.

This settles the proof of the claimed algebra structure for products of depth one elements. Now by
means of the above Lemma one can deduce the general case similar as for the stuffle product of
MZV’s. ⇤
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Multiple divisor functions - Derivation

Theorem (Bachmann-K.)

The operator d = q

d

dq

is a derivation on MD.

Examples:

d[1] = [3] +
1

2
[2]� [2, 1] ,

d[2] = [4] + 2[3]� 1

6
[2]� 4[3, 1] ,

d[2] = 2[4] + [3] +
1

6
[2]� 2[2, 2]� 2[3, 1] ,

d[1, 1] = [3, 1] +
3

2
[2, 1] +

1

2
[1, 2] + [1, 3]� 2[2, 1, 1]� [1, 2, 1] .

The second and third equation lead to the first linear relation between multiple divisor functions in
weight 4:

[4] = 2[2, 2]� 2[3, 1] + [3]� 1

3
[2] .
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Multiple divisor functions - Connections to MZV

For k 2 N consider the map Z
k

: FilW
k

(MD) ! R [ {±1} given by

Z

k

(f) = lim
q!1

(1� q)kf(q) .

Theorem (B.-K., arXiv.NT:1309.3920)
(i) For s

1

> 1 and s
1

+ · · ·+ s

l

= k it is

Z

k

([s
1

, . . . , s

l

]) = ⇣(s
1

, . . . , s

l

) .

(ii) If s
1

+ · · ·+ s

l

< k then Z
k

([s
1

, . . . , s

l

]) = 0.

(iii) For any f 2 FilW
k�2

(MD) we have Z
k

(d(f)) = 0.

(iv) If f 2 FilW
k

(MD) is a cusp form for SL
2

(Z), then Z
k

(f) = 0.

Elements in the kernel of Z
k

give rise to relations between MZV. In particular since 0 2 kerZ
k

,
any linear relation between multiple divisor functions in FilW

k

(MD) gives an element in the
kernel.
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Multiple divisor functions - Connections to MZV

We also rediscover exotic relations related to cusp forms, e.g. the cusp form
� = q

Q
n>0

(1� q

n)24 can be written as

1

26 · 5 · 691� = 168[5, 7] + 150[7, 5] + 28[9, 3]

+
1

1408
[2]� 83

14400
[4] +

187

6048
[6]� 7

120
[8]� 5197

691
[12] .

Letting Z
12

act on both sides one obtains the relation

5197

691
⇣(12) = 168⇣(5, 7) + 150⇣(7, 5) + 28⇣(9, 3) .

These type of relations can also be explained via the theory of period polynomials (Gangl,
Kaneko, Zagier) or via a motivic interpretation (Pollack, Schneps, Baumard).
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Multiple divisor functions - Summary

Multiple divisor functions are formal power series in q with coefficient inQ coming from the
calculation of the Fourier expansion of multiple Eisenstein series.

The space spanned by all multiple divisor functions form an differential algebra which
contains the algebra of (quasi-) modular forms.

A connection to multiple zeta values is given by the map Z
k

whose kernel contains all
relations between multiple zeta values of weight k.

Some questions and open problems:

(i) Is there a modular/geometric/motivic interpretation of the multiple divisor functions ?
(ii) Dimensions of the graded parts ? Basis ?
(iii) Is there an analogue of the Broadhurst-Kreimer conjecture ? Algebra generators ?
(iv) What is the kernel of Z

k

?
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