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Multiple zeta values

Definition
Let s > 2, Sa, ..., S; > 1 be natural numbers, then we call sums of the type

C(Sl,...,sl): Z %

1 St
n1>...>n; >0 1 l

a multiple zeta value (MZV) of weight s1 + ... + $; and depth [.

@ The product of two MZV can be expressed as a linear combination of MZV with the same
weight (stuffle relation). e.g:

> ((r) - C(s) = C(r,8) + C(s,m) + C(r + 5).

@ M2ZV can be calculated by iterated integrals. This gives another way (shuffle relation) to
express the product of two MZV as a linear combination of MZV.

\/ @ These two ways to express products give a lot of Q-relations between MZV (double shuffle
relations).
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Multiple zeta-values

Example:
€(2,3) +3¢(3,2) +6¢(4,1) "2 (2) - ¢(3) "2 ¢(2,3) +¢(3,2) +{(5) -
— 2¢(3,2) 4 6¢(4, 1) = ¢(5).
But there are more relations between MZV. e.g.:
¢(2,1) = ¢(3).

These follow from the "extended double shuffle relations" where one use the same combinatorics
as above for "((1) - {(2)" in a formal setting. The extended double shuffle relations are
conjectured to give all relations between MZV.
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Let A, be a finite alphabet {zl, 22,23, } A word is an ordered sequence W = zj, ...Z2;, of
elements taken from A, with repetition allowed. We include the empty word () (or 1). We use the
concatenation product w - w’ and denote by A’ the set of all words. We take A7 as a basis of
the vector space Q < A, > of noncommutative polynomials. The concatenation of words
defines by linearity a multiplicationon Q < A, >.

Definition
The stuffle product * on @ < A, > is defined by linear extension of the recursion given by

lxw=wx1l=w
for all w € A and for words w, w’ and letters 21, z; by

ziw *k zjw' = z;; - (wk zjw') + z5 - (Zw* w') + zi4j - (wxw).

T ~—

Proposition (Hoffmann) (M' Wﬂ/

The algebra (Q <A, >, *) is a commutative and associative Q-algebra. A Pa;l’f"\é

The stuffle product is an example for a quasi-shuffle product. ¢x A X k ~ m
g -~
(2 ) 9 Fea
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We denote by M Z € R the Q-subalgebra generated by multiple zeta values.

=2 o2 )+ 2, 20‘2),

Theorem (Hoffmann)
There is a unique homomorphism of Q-algebras -+ g;‘f/l ZJ
Q<A >, %) > MZ

such that ¢(z1) = 0 and for all words w = z;; ...2;, with i1 > 2

C*(Zil Z”) = C(sh g onoy Siz)-

Remark

There is also a similar homomorphism ¢ : (Q <A{z,y} >, LU) — M Z which can be used
to describe the shuffle product. The comparison of (* and C“" , then leads to the extended
double shuffle relations.
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Dimension conjectures for M Z
Consider the formal powerseries

2
Eo(z) = 1fx2 =a?+at+a8+ . "even zetas",
z® 3,5 .7
Os(z) =gz =" +a" +a"' + .. "odd zetas",
z'? 12 16 18
S(x) = m =x 4z +x"+.. "period polynomials”.

Broadhurst-Kreimer Conjecture

The Q-algebra M Z of multiple zeta values is a free polynomial algebra, which is graded for the
weight and filtered for the depth ("depth drop for even zetas"). The numbers gy, ; of generators in
weight & > 3 and depth [ are determined by

1

BK(z,y) = Z dimg <grl?’/l’D MZ) zhyl = (1 + Ex(z) y) W

k,1>0 £>3,0>1

RrRC
H/{( 3e})

where

1
1— Og(z)y + S(x)y? — S(z)y*’

BK(z,y) = (1 + Ez(x)y)

Dimension conjectures for M Z

Zagier’s Conjecture

The following identities hold:

- 1
T 12— g3

Zag(z) = Z dimgq (grkW MZ) zF

k>0

Zagier’s conjecture is implied by Broadhurst-Kreimer’s conjecture. In order to neglect the depth
we just have to set y = 1 and get

1+E2(z)71+%7 1
1—03($)_1—

Zag(z) = BK(z,1) = {23

3

1—x?

Brown’s Theorem

The Q-vector space of multiple zeta values is spanned by the "23"-MZV’s, e.g. by those
C(Sl, .oy 81) With 8; € {2, 3}

By Brown’s theorem the dimensions in Zagier’s conjecture are the maximal possible ones.



Theorem (Gangl&Kaneko&Zagier)

(i) The values §(odd7 odd) of weight & satisfy at least dim S}, linearly independent relations,
where S}, denotes the space of cusp forms of weight k on Sla(Z).

(i) For each even period polynomial an "exotic" relation as in (i) can be constructed.

Example. For k = 12 and k = 16, i.e. the first weights for which there are non-zero cusp forms,
we have the identities

28¢(9,3) + 150 (7, 5) + 168¢(5,7) = %%%?g(12)
66¢(13,3) + 375¢(11,5) + 686(9, 7) + 675¢(7,9) + 396¢(5, 11) = %g(m).

Multiple g-zeta values

Many of the most basic concepts in mathematics have so-called g-analogues, where ¢ is a formal
variable such that the specialisation g = 1 recovers the usual concept. Attributed to Gauss are the
g-integers

{ntg=1+q+...+q"7" =
We will study the following g-analogues of multiple zeta values.

Definition [(modified) multiple g-zeta-value]
For s1,...,5 > 1 and polynomials Q1 (t) € tQ[t] and Q2(1) . .., Qi(t) € Q[t] we define

XTI~ YN s WU e LLC ) EEEL-1C 69 M8

s hs0 (1 — qn1)s1 . (]_ — qnl)sl

Such series can be seen as a g-analogue of multiple zeta values, since we have for s; > 1
(%Lni(l — @) T (1, Qr, Q) = Qu(1) . Qu(1) - C(s1, - s0)

Observe, just replacing 1 by {n}, in multiple zeta values will not work.

10/39

Multiple Eisenstein series
Let A, = Z7 + Z be alattice with 7 € H := {z + iy € C |y > 0} and

P={mr+neA, |m>0Vv(m=0An>0)}=UUR
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We call P the set of positive points and we define an order > on A by i
AM=A& A — X EP /06_7[/;’)04
for )\1,)\2 S AT.
Multiple Eisenstein series
Definition
For s1 > 3, 82,...,5; > 2 we define the multiple Eisenstein series of weight
k = s1 + -+ s; and depth [ by
1
Gsy,.vyst (T) 1= Z Ao S
A= A=0 71 T
XNi€EAL
hoew o
o G (T) with even weight k are the classical Eisenstein series. ke /:"/
Lew (

o Gy, 5, (7), ie. the depth [ = 2 cases, are due to Gangl, Kaneko and Zagier.

@ general multiple Eisenstein series are considered first by Bachmann.

The multiple Eisenstein series have a Fourier expansion

Gs1,,..,sz (T) = Zanq’ﬂ7 (q — 6271'1'7-)

n>0

since Gs,,.. 5, (T +1) = G5 (7), butin general they are not modular.

Question: What can we say about the Fourier coefficients a,, ?



Multiple Eisenstein series - Fourier expansion, preliminaries Multiple Eisenstein series - Fourier expansion, depth=1

To calculate the Fourier expansion we rewrite the multiple Eisenstein series as

1 Proposition (Lipschitz formula)
Goy,os(T) = N Fork > litis
Ar-=A=0 7L T
1 1 k—1,2mid
- Wilo) = 3 oty = IS et
; y )
(M.,%S)epl 4N Aot 4 M) (N = (z+n)k k =
We decompose the set of tuples of positive lattice points Pl into the 2! distinct subsets With this we get

Ay X -+ x A C Plwith A; € {R, U} and write

G Ay = 3 1 GY(r) =Y W(mr) = Z k de 1 2mimydr

a1 02+ )2 . (W)™ ma>0 miso " >0

(A1yeey A)EALX XA

27rz
this gives the decomposition - l ggk 1
n
Ap. A e (9
Gops =, Gl .( 2mi) (K],

As,.., A €{R,U}
where 0,_1(n) = de dF—1 is the classical divisor sum.
In the following we identify the A; . .. A; with words in the alphabet { R, U }.

Multiple Eisenstein series - Fourier expansion, depth=1 Multiple Eisenstein series - Fourier expansion, U-case

g ;
In general the Gi,  , can be written as

Indepth I = 1 we have G (1) = GE(7) + GY(7) and av' () = Z 1
e s o (T 1) (T )
R 1 ni,...,n €Z
G = — =((k),
k(T) mz_o (0T+n1)k C( ) = Z \I/sl(mlT)...\Ilsl(mlT)
n11>_0 my>-->my >0
727”')51+~~~+Sz
=Y = S W) - St g,
e (m17‘+77,1 =, (s1 =1 . (s _1)!m1>"'>mz>0
ni1€Z dy,...,d;>0
S1+-+s
where Wy is the so called monotangent function defined for k > 1 by = ( 2m ' : Oo. _ _ (n) ,::
(51— D). (51 — I &= Tor b1l &
1 1 ! n>0
‘I’k($)zém~ = (= 27”)81+ sy, s U—J

We call the 0, ... », multiple divisor sums and their generating functions

[s1,...,s1] € Q[lg]]

To calculate the Fourier expansion of GkU one uses the Lipschitz formula.

are called brackets.



Multiple Eisenstein series - Fourier expansion, R!-case

1
The other special case thwSl can also be written down directly:

1
GR’ — = Sy
sl,...,sl(T) E 07 4+ ny)st ... (07 +ny)st g(sl Sl)
my=--=m;=0
n1>-->n; >0

What about the mixed terms in depth { > 1 ?

Multiple Eisenstein series - Fourier expansion, depth=2

In depth 2 we have G, 5, = GEE + GUE 4+ GEY 4+ GUU, and

1,52 81,82 51,52 1,52

1
GUR —
51,82 m1>02,7;12:0 (m17+n1)51 (OT+1’L2)81
ni1€Z,n2>0
1 .
= 2 Walmr) 3 o = (=2m) " s1]G(s2)
m1>0 na >0 2

1
Gl =Y
w07 2 G G )
ni>ng
n;, €L

where we call Uy, s, (z) =

= Z Uy, s, (m7).

m>0

1 ; ,
n>ne (@Enn)®L (@ Fna)°E the multitangent function of depth 2.
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Multiple Eisenstein series - Fourier expansion, depth=2

Using partial fraction expansion one can show that

Vom@= Y <<—1>S2<’jj‘i>+(—1>’“ﬂ(’jj‘i))c(mml(x).
ki+ko=s1+s2

and therefore

GSRl(:]52 (r) = Z Ws,, 55 (M)

m>0

DS <(1)S2 (k - 1) (e (k - 1)) ) (mr)
m>0 ky+ha—s1+s2
o [R2—1 ko—sy (k1 —1 k1
> <(—1) <82 B 1) +(=1) <31 _ 1>> C(k2)(=2mi)™ [a].

ki1t+ko=s1+s2

N — -
“ o~ Scvakmal ool cie f

Multiple Eisenstein series - Fourier expansion, depth=2

Therefore we obtain
Proposition (Gangl-Kaneko-Zagier)

The Fourier expansion of the double Eisenstein series is given by

RR UR RU U
G31,82 (T) = G81,Sz + G51,82 + G81 p G-Slacs(Q

= (51, 52) + (—270)" [)C (52) R

+ > CR (k) (—2mi) " k] + (—2mi) 2 sy, 9]
k1+ko=s1+s2

kg —1 kg — 1
ko = (—1)2 (P —1)ke—s (72 :
Csle = (=1) <32—1)+( ) <31—1

where




Multiple Eisenstein series - Fourier expansion, word reduction

In the case GV we saw that we could write it as GU multiplied with a zeta value.

In general having a word w of depth [ ending in the letter R, i.e. there is a word w’ ending in U
withw = w' R and 1 < r < [ we can write

’
G:;,...,SL(T) = G;Ul,...,s,,,.(T) : C(Sl*TﬂLh LR} Sl) .

. "RUURR _ ~RUU
Example: G35 £ 67 = Gy'35 - ((6,7)

Hence one can concentrate on the words ending in U when calculating the Fourier expansion of
a multiple Eisenstein series.

Multiple Eisenstein series - Fourier expansion, multitangent fct's

Letw = R™UR"™U ... R"iU, then using multitangent functions one can write

Gy 5 (T) = Z Wy, (M) - W (M) o Wy s (7))
my>->m; >0

Definition
For s1,...,8; > 2 the multitangent function of depth [ is defined by

1

Vopos () = :

e n1>~Z>nL (I + n1)51 te (m -+ nl)sl
n;EZL

In the case | = 1 we also refer to these as monotangent function.

Let us consider an example...

Example: Let w = RURRU, then a typical summand of GEUREU jg

51,...,55

a— ™ 1 N
(2-t3’71—5+1+2-¢@1)51 (Ej—5+1+2-@—1)‘2 (l+2t7j»1)33 (2-@1)‘*@»1)55’ :
(Puaty) Eis) Ny

4o A

and therefore
GRURRU = Z \1181732 (mlT)\IIS3,S4,55 (m27-)'

S1,...,85
mi1>ma>0

Multiple Eisenstein series - Fourier expansion, multitangent fct's

To calculate the Fourier expansion of such terms we need the following theorem which reduces
the multitangent functions into monotangent functions.

Theorem (Bouillot 2011, Bachmann 2012)

Let M Z; be the Q-vector space spanned by all MZVs of weight k. Then for s1,...,s; > 2
and k = s1 + - - - + s; the multitangent function can be written as

k
U, s (z) = Z Ch—n(81, -, 81)Vp(x)
h=2

with ck,h(sl, ey Sl) eEMZy 4.

Proof idea: Use partial fraction decomposition.




Multiple Eisenstein series - Fourier expansion, general case Multiple Eisenstein series - some open questions

To summarize one can compute the Fourier expansion of the multiple Eisenstein series G, s
in the following way

! The multiple Eisenstein series fulfill the stuffle product, for example it is

o Split up the summation into 2" distinct parts G where w are a words in { R, U }.. Gu(1) - Go(7) = Ga6(7) + G 4(7) + G1o(7) -

@ For w being a word ending in I one can write G, . as G;";’m <C(...,8) witha

) This follows using the same combinatorial argument as in the MZV case, but the shuffle product
word w’ ending in U.

can't be fulfilled because for example it is

o For w being a word ending in U one can write G, as
C(4)¢(6) = ¢(4,6) +4¢(4,6) + 11¢(6, 4) + 26¢(7,3) + 56¢(8,2) + 112¢(9,1)
Gl am= ) W, (). ().

and this equation does not make sense in terms of multiple Eisenstein series. In fact, because of

my>->m; >0 .
convergence problems we haven’t defined Ggyl yet.

@ Using the reduction theorem for multitangent functions this can be written as a MZV-linear

combination of sums of the form We have two options to define and study non convergent multiple Eisenstein series:
Nyt tk @ use analytical regularization (Bouillot and Bachmann
Z Wiy (ma7) .. Wy, (my7) = (2mi) Rk o k) y 9 ( )
my>->m;>0 @ use formal Fourier expansions (Bachmann-Tasaka, 2017)

for which the Fourier expansions are known. The second approach was our motivation to study the brackets in its own.

Multiple Eisenstein series - Summary and Examples generating series for multiple divisor sums
Theorem (Bachmann, master thesis 2012) Recall the multiple divisor sum is for any integers s1, . .., s; > 0 defined by
Multiple Ei in seri hol hic functi h half pl hich
@ Multiple Eisenstein series are holomorphic functions on the upper half plane, which are Oyt (n) — Z Ufl "'UZSZ

defined as a sum over ordered lattice points. ) _
wu1v1+Fuv=n
@ They have a Fourier expansion where the constant term is given by the corresponding ur>>u>0

multiple zeta value and the remaining terms are rational linear combinations of products of and its generating series for multiple divisor sums are denoted by the brackets
multiple zeta values and multiple divisor functions.
1 n
A few examples: [317'--78l} = (51 — 1)'(31 — 1)' 2051—1¢m’51—1(n)q € QHQ]]
n>0
Gaa(r) =C(4,4) +20¢(6)(2mi)*[2] + 3¢ (4)(2mi) *[4] + (2i)*[4, 4], NI A G/ O by,
Example

_ 5,00 4, 51 ;
G322(7) =((3,2,2) + ( 5 ¢(2,3) + 5 §(372)) (2mi)*[2] 2] = Zal(n)qn — g +3¢% + 4¢3 + T + 645 + 1245 +8¢7 + ...

n>0

[4,2) = é S 031(n)g" =

n>0

- 1—;<(2, 2)(2mi)°[3] + 3¢(3)(2mi)*[2, 2] + 4¢(2) (271)°[3, 2]

. (¢® +3¢* +15¢° +27¢° + 78¢" + ...)
+(2mi)7[3,2,2] .

[
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Theorem (Bachmann-K.) // 2 y! Srack, /S Cs,, .., s,

(i) The Q-vector space MD has the structure of a Q-Algebra (MD, -), where the el
multiplication is the natural multiplication of formal power series, whick-is i@req\w.r.t. the
weight and the depth.

(i) The ring of quasi-modular forms is a subalgebra of M D

(i) The multiplication is a (homomorphic image of a) quasi-shuffle algebra in the sense of
Hoffman.

The first products of multiple divisor functions are given by
D@Lk
e =2+ 2= lpm

(1] [2) = 1,2+ [2,1) + 3] - 52, a5t

-2, =1[1,2,1+22,1,1]+[2,2] + [3,1] — 2[2, 1].

Multiple divisor functions - multiplicative structure
Idea of Proof: At first we rewrite the multiple divisor functions. For this we define a normalized

polylogarithm by

Liy(z) = L{(:gz),

where for s, z € C, |z| < 1 the polylogarithm Li;(2) of weight s is given by

Lig(z) = Z%ﬂ

n>0
Proposition
For ¢ € C with |q| < landforall s1, ..., € IN we can write the multiple divisor functions as
[81,...,81] = Z Lis1 (qnl)...Lisl (qm) o
ny>-->n; >0

We remark for later use that, by the definiton of eulerian polynomials Ps(q) € Qlq],

Tis (q) = 1 qPs_1(q)

(s—=1! (1-9)

is in fact a rational function in g if s € N.

Multiple divisor functions - multiplicative structure

The product of [s1] and [s2] can thus be written as

[51} : [52] = Z Ei51 (qnl) : Z fisg (qnl)

ni1>0 no>0
= Z _|_ Z S 4 Z Lisl (qn1)Lis2 (qnl)
ny>n2>0 na>ny >0 ni=n2>0
= [317 52] + [327 51] + Z f’isl (qn) fisz (qn) .
n>0

In order to prove that this product is an element of MDlve will show that the product
Lis, (¢™)Lis, (¢™) is a rational linear combination of Li; (¢™) with 1 < j < s1 + so.

Multiple divisor functions - multiplicative structure

Lemma
For a,b € IN we have

a b
Lia(2) - Lip(2) = Liags(2) + 3N, Lij(2) + > N Lij(2)
j=1 j=1

where the coefficient )\i » € Qfor1 < j < ais given by

a—j (a+b—j5"

with the Bernoulli numbers B,,.

y

This settles the proof of the claimed algebra structure for products of depth one elements. Now by
means of the above Lemma one can deduce the general case similar as for the stuffle product of
MZV’s. O



Multiple divisor functions - Derivation

Theorem (Bachmann-K.)
The operator d = qdiq is a derivation on MD. J
Examples:

1

) = 3]+ 512 - 2.1,
a2) = [4] + 28] ~ g[2] — 4[3,1],
im_ﬂq+m+ém—zmm-ﬂ&m

d[1,1] = [3,1] + %[2, 1] + %[1,2] +[1,3] = 2[2,1,1] — [1,2,1].

The second and third equation lead to the first linear relation between multiple divisor functions in
weight 4:

4] = 22,2) — 203,11 +[3] - 3[2].

Multiple divisor functions - Connections to MZV

For k € IN consider the map Zj, : Fil}¥ (MD) — R U {00} given by

20 (1) = lm(1 - 0)*f(@).

Theorem (B.-K., arXiv.NT:1309.3920)
(i) Fors; >1lands; +---+ s = kitis
Zk ([s1,-- > s1]) = €15, 81) -

(i) If 81+ - —|—sl < kthen Zx([s1,...,s1]) =
eyl B ob2dAR) we have 7, (d(f)) —O/ “(\ ‘P "”fwﬁ/sé €2 -2
(iv) If f € FllW(MD) is a cusp form for SLo(Z), then Zj,(f) = 0.

Elements in the kernel of Z, give rise to relations between MZV. In particular since 0 € ker Zy,
any linear relation between multiple divisor functions in Filzv (MD) gives an element in the
kernel.

Multiple divisor functions - Connections to MZV

We also rediscover exotic relations related to cusp forms, e.g. the cusp form
A =q[],-0(1 — g")** can be written as

1

- A=1 1 2
ST 68[5,7] + 1507, 5] + 28[9, 3]

1 83 187 7 5197

1408 21 - 14400 4+ 8 = Gor 12)-

+ 6048 161 - ﬁ[ 691

Letting Z12 act on both sides one obtains the relation

5197

GQﬁC(lZ) =168¢(5,7) + 150¢(7,5) + 28((9, 3) .
These type of relations can also be explained via the theory of period polynomials (Gangl,
Kaneko, Zagier) or via a motivic interpretation (Pollack, Schneps, Baumard).

Multiple divisor functions - Summary

@ Multiple divisor functions are formal power series in ¢ with coefficient in € coming from the
calculation of the Fourier expansion of multiple Eisenstein series.

@ The space spanned by all multiple divisor functions form an differential algebra which
contains the algebra of (quasi-) modular forms.

@ A connection to multiple zeta values is given by the map Z} whose kernel contains all
relations between multiple zeta values of weight k.
@ Some questions and open problems:
(i) Is there a modular/geometric/motivic interpretation of the multiple divisor functions ?
(i) Dimensions of the graded parts ? Basis ?

)
(iii) Is there an analogue of the Broadhurst-Kreimer conjecture ? Algebra generators ?
(iv) What is the kernel of Zj, ?



