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Why care about modular forms?

Modular forms can been seen either as
@ functions with infinite symmetries
@ (-series Z anq"™ with arithmetical interesting coefficients

Modular forms span finite dimensional vector spaces and this allows for example "trivial" proofs of
interesting identities.
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Example
Letn > 0 and

ra(n) = #{(a,b,c,d)GZAL\CLQ-sz + ¢+ d? =n},

then for the generating series
Q n
> g = (Y d" ) g_- E2<> 1Bx(q") = Y (82d)a
n=0 E€Z n=0 d|n
44d
=1+ 8¢+ 24¢® + 32¢° + 24¢* + 48¢° + 96¢° + 64¢" + ...

where Eg(q) denotes the Eisenstein series of weight 2 (to be defined later).

For example we read of:

ra(1) =8
r4(2019) = 74(3-673) = 8(1 + 3 + 673 + 2019) = 21568.

What will we learn ?
We will study the ring of modular forms

o0
M, = @ M.
k=0
We will present proofs of the following characterisations:
(i) My =~ C[E4, Eg) Wie Hiy o ts, 2
(i) My = { Hecke eigenforms ), Heekr
(iily My @ Sk =~ Wy Shiwave —Erell~
)

(iv) My = <{Ek} > {EaEk—a}>c L(O&M-&v‘ ~ 2&3 Vev

If time permits, we relate modular forms to multiple zeta values and their g-analogues. We plan to
indicate why (iv) should be seen in analogy to Eulers formula

Bsy, (271'2 :'E
2k) = —
SR = = ok k- ot it
where the Bernoulli numbers are given by the series 4
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(i) Modular forms:
Don Zagier: Utrecht lectures; Introduction to modular forms; The 1-2-3 of Modular Forms;
Modular forms with rational periods. (online: https://people.mpim-bonn.mpg.de/zagier/)

Francois Martin & Emmanuel Royer: Formes modulaires et periodes. (online at docplayer.fr)
(many excellent books/surveys: Shimura, Diamond-Darmon-Taylor, Cornell-Silverman, ...)

(i

=

Multiple Eisenstein series and multiple g-zeta functions:

Herbert Gangl & Masanobu Kaneko & Don Zagier: Double zeta values and modular forms.
(online: https://people.mpim-bonn.mpg.de/zagier/)

Henrik Bachmann: Multiple Eisenstein series and g-analogues of multiple zeta values;
Henrik Bachmann & U.K.: A dimension conjecture for g-analogues of multiple zeta values.
(both available online: https://www.henrikbachmann.com)

(iii) Multiple Zeta values:

Jose Burgos-Gil & Javier Fresan: Multiple zeta values: from numbers to motives. (online:
http://javier.fresan.perso.math.cnrs.fr/mzv.pdf)

Modular group

Definition

We denote the upper complex halfplane by
H={reC|Im(r)>0}.

We use the notation 7 = = + 4y, with , y € R

We have an action
SLy(Z) x H — H

((23),7) _ at +b

cr+d’

We call I'(1) = SLy(Z)/+1 the modular group (of Level 1).

Fundamental domain

Proposition (Fundamental domain for I'(1))
Let

1
F={reH| - <Re(7)<§and|ﬂ>1}

DN | —

then we have
o forany 7 € Hi there existay € I'(1) such that v.7 € F.

@ if 7 and .7 are elements of F, then 7, 7y.7 € OF.
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Idea of proof: First we observe that the matrices

0 1 11
S = (_1 0) and T = <0 1)
generate SLo (7). We have (/

Tr=74+1 and ST=—.
T

The following diagram shows how the fundamental domain JF is translated by different matrices in

SL,(Z).

Figure : Translations of the fundamental domain F.




Given Ty there is some power T of the translation 1" such that

1 1
1 :=Tl°7'oe {TGH)—E <Imt < 5}
Now using S we increase the imaginary part of 7 and continue the above procedure untill we
endin F.
It easy to see that the vertical boundary is identified via the translation 7". Analogously the lower
part is identified with .S. Observe that the corners and 7 have non-trivial stabilisers. Il

Aside: Modular curve

\_’
Remark

In fact there are natural bijections

T)N\H —> > £/C*

{ complex elliptic curves }/ isomorphisms

T A =Z7+7 E. = C/A,

Here L denotes the set of all lattices in C on which C* acts by scaling. The second bijection
uses the complex uniformisation of elliptic curves, i.e., for any elliptic curve
E:Y? = X3+ AX + B, there exists a lattice A and a complex isomorphism
C/A—>E:Y?’=X3+AX+B
2> (p(z,4),9(2,A))

Aside: Modular curve

Remark

The action of I'(1) on H extends to a proper discontinous action
(1) x (]HI U IPI(Q)) — HuUPY(Q).
Then by abstract topology and straightforward calculations we get an isomorphism
X(1) = T\(H v P(@)) - P1(C)

in such a way that
q = exp(2nT)

is the local parameter at o0 € P1(C).

Modular forms

Definition

A holomorphic function f : H — C is called a modular form of weight k if N- .
(i) f(ZTTIZ) = (et +d)*f(r)forall T € Hand all (¢}) € SLy(Z) g ‘At""le S
iy f(r)= ano an, q", for ¢ = exp(2miT)
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If f is a modular form of weight k& we have by (i)
fr+1)=f(T7)=f(7),
f(=1/7) = F(ST) = 7" f(7),

Thus any function in (i) has a Fourier expansion Z
is called

nez On q" - The additional requirement in (i)

" f is holomorphic at infinity".
Since —I € SLy(Z), a modular form of weight k satisfies f(7) = (—1)* f(7). This shows
that there are no non-trivial modular forms of odd weight.
Definition
We denote the vector space of modular forms of weight k by Mj.. A modular form

= Zn;@ anq"™ with ag = 0 is called cusp form (or parabolic form) and the vector space of
cusp forms is denoted by S},




Proposition J

Modular forms with different weights are linearly independent over C.

Proof: Suppose we have nonzero modular forms f1, fo, . .., fm with respective weights
k1 < ko < -++ < kyp, such that they admit a nontrivial linear relation

ayfi(7) + aafo(r) +

forall T € Hand oj # Oforj = 1,...,m. Replacing 7 by S(7) and using the modularity, i.e.

f5(S()) = 7% f;(7), we obtain

a1 fi (1) + @™ fo(T) + -+ T (1) = 0 (4 )

o+ A fra(T) = 0 )

for all 7 € HL. With Fourier expansions f;(7) = Y., ) q" where q = 2™ this is

equivalent to

[e¢]
Z (alr a4 apr*2a® + o 4 rFmalm )) e?minT — (.
n=0
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Now we consider this equation for 7 = ¢y (y > 0), then

0
2 (ozl i) al) + as(iy)2a@® + -+ am(iy)kma%m)) eI =0, (2

Forn > Oandany r > 0 we have lim,_,» ¥ Te~2™Y — (). Now let NV be the smallest

integer, such that at least for one 1 < j < m we have a(J) # 0. Dividing (2) by e~ 2™V¥ and
taking the limit y — 00 we obtain

lim a1 (iy)" ay ¢+ az(zy)kzaﬁ) -+ o (1Y) ma( ™ =0,
y*)

But the left-hand side of this equation is the limit y — o0 of a non-constant polynomial in ¥,
which can not be zero and therefore a relation of the form (1) can not exist. (]
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Eisenstein series

Proposition
Addition and multiplication of holomorphic functions induces the structure of a graded ring
_—
M*(SLy(2)) = D Mi(SL2(2))
k=0

on the set of all modular forms.

Definition (Eisensteinseries)
Let k € IN be even, then the Eisenstein series of weight k is defined by

(k
H.
2(27rzk2 (mz +n)k’ Te

Gk(’r =

Remark

° Z/ abbreviates .., )ez2/(0,0)

(k—

° 20x z))k is a normalising factor (different for different authors!)

Theorem

The Eisenstein series G, () are modular forms of weight & > 4 and they have the Fourier
expansion

Gutr) = E= ey 1+ 3 o sy

7) = or—1(n

k (2mi)k pa k—1\1)q ",

where o, (n Zd‘ dF is the divisor function of degree k, ¢ = ¢>™* and
¢(k) Zn;l 7 is the value of the Riemann zeta functions at k.

Remark

(i) By Euler’s relation we actually have G, € Q[[¢]], indeed we have

By &
G(r) = =7 + Z op—1(n)q".
n=1

(i) Another common notation for the Eisenstein series is given by

Ek( —1—720%1
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Idea of Proof:
It is straightforward to show that for & > 4 the series G (T) converges.
Using the convergence of G/, (), we deduce

ar+b 1
G
k(CT+d 227rz" Z (m“7+b+n)k

ct+d

1
= (er +d)f 27rzkz m(at +b) + n(cr + d))*

(k—1)! « 1
(2mi)k mzn ((ma + nc)z + mb + nd)*’

= (e + d)’C

For (2 Y) € SLy(Z) the set of all (ma + nc, mb + nd) equals the set of all
(m,n) € Z2\(0,0). We therefore have

+b
Gi(7) = (er + d) G ()

forall (25) € SLy(Z), i.e. Gy, transforms as a modular form of weight k for SLo(Z).

Lemma (Lipschitz-formula)

2eda\y

Z 1 _ (_27T7’)k i rk—1627rirz
(z+n)k (k=1 & ’

nez

The Lipschitz formula follows either from the Poisson summation or from the Taylor expansion of

% (Exercise!). p

s
Now the Fourier expansion of Gy, follows (/
—1)! (k —1)!
Gr(r) =
k nk W; 2(2mi)k é mg+ n)k
k-1 L sel,
:( 22 ZErkl%«'w‘mz W 6_&/
(27I'Z) m=1r=1 L T ,_11;/
_ e i Ca Ter
(2772 =
where o (n) = de d" is the divisor function of degree k, ¢ = ™% and
(k) = X,=1 7 is the value of the Riemann zeta functions at k.
O

1
Ga(T) = == + q + 9¢° + 28¢° + 73¢* + 126¢° + -

240
1
Go(r) = =552+ +33¢ + 244" + 1057¢" +
1
Gs(1) = 180 + ¢+ 129¢° + 2188¢> +

Later we will prove the identity IQOG?1 = (G and this implies Hurwitz identity

n—1

o7(n) = o3(n) + 120 Z o3(m)oz(n —m)

m=1

for alln = 0. For example we have

o7(3) = 2188 = 28 + 120(1- 9 + 9 - 1) = 28 4 120 - 18 = 28 + 2160

Eisenstein series of weight 2

We define the Eisenstein series G2(7’) by its Fourier series

1
GQ(T):*ﬂ+q+3q +4¢ + 7¢* + 6¢° + 12¢° + -

In fact, for the weight 2 case one has to inforce convergence by means of the Hecke trick:

! 1
G;(T)=—8Llim2 ( y

72 5—0 er 4+ d)? |er + dJ?s”
m,n

S

The function G§ transforms as a modular form of weight 2. It satisfies

N
GQ(T)—GQ( )+7Ty.

Now, using Im (flig) = RL"%‘Q we deduce the functional equation w.r.t. (‘g 2) € SLy(Z)
at +0b cler + d)
G = (e + d 2G T)— —/——— .
2 (CT + d) ( ) Ga(m) 4mi

! qugc‘ - oIz [ @



G & g-series

We have
— n

I Y e At

Another not so well-known identity is given by a g-average of negative polylogarithms. Let

. se kv

Ulerian polynomials’, then we obtain

where Ps(z) are th

G} is a g-zeta value

Now using Ps(1) = s!and ?/" by 4}9

. (lfqn) n—1\ __
(}Ln%(l_q) —glﬂn{(l—i-q-&- .+q )—n
we get
_ q"Pr-1(q")
hm(l—q) gLH} g = = (k—1)(k).

nl((lq))

\H(}w /\7{3

u%

Remark
There is a natural map

{modular forms f of weight k } — {F : L — C| F(cA) = ¢ *F(A), Yce C*, A e L}

given by
w1
f(—=

) = wng(Zwl aF ng)
w2

The Eisenstein series Gk(‘r) corresponds to the homogenous lattice function

Discriminant
Definition
The discriminant (or Delta funtion) A (7) is defined by

where 7 € Hand ¢ = e2™7. -

Theorem

A(T) is a modular form of weight 12.

Proof: We have

%log(A( ) = % = diT (27”'7' +24 Z log(1 — q"))

n=1

0 ng" 1 0
4 1—q"> = —48mi —ﬂ+§1 T‘an q"




Now by means of the transformation laws for G'a, we derive for 7y = (‘C‘ g) € SLy(Z)

A=) LA, e
(e + d)? A(?TTIS) A7) et +d’

hence

In other words we have

ar +b\ 12
A(CTer) = (et + d)2A(T) - Ky

for some k.~ € C. We now show that ., = 1 for all v € SLa(Z).
We have A(T) = A(7 + 1), thus o= 1. Furthermore for S = (9 1) we get

A(i) = A(Si) = A (-%) — (=)2A@) - kg

thus we obtain kg = 1. Since T" and .S generate SL2(Z), we finished the proof. O

Theorem (Valence formula)

For a non-zero modular form f of weight k we have

1 1 k
Uoo(f)+§vi(f)+§vw(f)+ Z Up(f) = E
peSLs(Z)\H
PFi,w

Idea of proof: Use Cauchy’s argument principle: You get the (order) of the zeros and poles of f in
SLo(Z)\H by integrating the logarithmic derivative f’/f around the boundary of the
fundamental domain F.

A H
B! DI E G
< Fa
a2 0 12

4

Figure : The contour of integration

Corollary
Let k € IN be an integer. Then
iy My = C,

iy Ifk =2,k < Oorif kis odd then M}, = 0.

iii) If k € {4,6,8,10,14}, then M}, = CEy.

iv) Ifk < 12o0rk = 14then S = 0.

v) Sia2 = CAandifk > 12then S, = A - M}, _1o.
vi) If k = 4then M, = CE}, @ Sk.

Proof:

i) Only constants have no zero.
ii) We already know this for odd k& and there is no solution for the others.
iy When k € {4, 6, 8,10, 14}, then the only solutions to the valence formula are:
k=4: v,(f) = 1landallother v, (f) = 0.
k=6: vi(f) = 1andall other v,(f) = 0.
k= 8: v,(f) = 2andallother v, (f) = 0.
k=10: v, (f) = vi(f) = 1 andall other v, (f) = 0.
k=14: v,(f) =2, vi(f) = 1 and all other v, (f) = 0.
Now, if f1, fo € My for any such k, then % is a modular form of weight 0, which by i)
must be constant. Therefore f1 and f are proportional to Ey, € Mj,.




Corollary
Let k € IN be an integer. Then
iy My = C,
i) Ifk =2,k < 0orif k is odd then M} = 0.
iii) If k € {4,6,8,10,14}, then My, = CEj.
iv) Ifk <12o0rk = 14then S, = 0.
v) S1a = CAandifk > 12then S, = A - My, _1o.
vi) Itk = 4then M = CEy @ Si.

Proof:

iv) If f € Sy we have vy (f) > 0, which is impossible for k < 12 or k = 14.

v We know that v, (A) = 1 and by the valenc formula this must be the only zero of A.

Therefore for any f € Sy, the function % is a modular form of weight & — 12.
vi) We can substract the constant term of any modular form f € M}, by adding a suitable
multiple of E,. U

Theorem (Dimension formula)

For an even positiver integer k we have

|
|

|+1 , k#2 mod 12
] , k=2 mod 12

Sl Sl

dimc Mk = {

Proof: This will now follow by induction on k from the results in previous Proposition. For k < 12
the above dimension formula is already proven. Combing the results of previous Proposition we
have

Myy12 = CEpr12o® A - My,

andsince | £ ] + 1 = | £+12| the statement follows inductively.

k 0|24 |6 |8|10|12 |14 | 16| 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36

dimegMg |[1 |01 ]1|1]| 1| 2|1 ]2]|2]|2|2|3|2|3|3|3]|3]4

Figure : Dimension of Mj, foreven 0 < k < 36.



