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Why care about modular forms?

Modular forms can been seen either as

functions with infinite symmetries

q-series
∞

a
n

qn with arithmetical interesting coefficients

Modular forms span finite dimensional vector spaces and this allows for example "trivial" proofs of
interesting identities.
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Example
Let n • 0 and

r
4

pnq “ #
 

pa, b, c, dq P Z4

ˇ̌
a2 ` b2 ` c2 ` d2 “ n

(
,

then for the generating series

ÿ

n•0

r
4

pnq qn “

´ ÿ

iPZ
qi

2
¯
4 ~

“ ´

1

3
pE

2

pqq ´ 4E
2

pq4qq “

ÿ

n•0

´
8

ÿ

d|n
4-d

d
¯
qn

“ 1 ` 8q ` 24q2 ` 32q3 ` 24q4 ` 48q5 ` 96q6 ` 64q7 ` . . .

where E
2

pqq denotes the Eisenstein series of weight 2 (to be defined later).

For example we read of:

r
4

p1q “ 8

r
4

p2019q “ r
4

p3 ¨ 673q “ 8p1 ` 3 ` 673 ` 2019q “ 21568.
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What will we learn ?
We will study the ring of modular forms

M˚ “

8à

k“0

M
k

.

We will present proofs of the following characterisations:

(i) M˚ – CrE
4

, E
6

s

(ii) M
k

“ x Hecke eigenforms yC

(iii) M
k

‘ S
k

– W
k

(iv) M
k

“ xtE
k

u Y tE
a

E
k´a

uyC

If time permits, we relate modular forms to multiple zeta values and their q-analogues. We plan to
indicate why (iv) should be seen in analogy to Eulers formula

⇣p2kq “ ´

B
2k

2 ¨ 2k

p2⇡iq2k

p2k ´ 1q!
,

where the Bernoulli numbers are given by the series

8ÿ

k“0

B
k

k!
Xk

“

X

eX ´ 1
.
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Whose thu is this ?
Heche
Shimura - Eichler

Kohnen - Zag :er
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Some selected references

(i) Modular forms:
Don Zagier: Utrecht lectures; Introduction to modular forms; The 1-2-3 of Modular Forms;
Modular forms with rational periods. (online: https://people.mpim-bonn.mpg.de/zagier/)

Francois Martin & Emmanuel Royer: Formes modulaires et periodes. (online at docplayer.fr)

(many excellent books/surveys: Shimura, Diamond-Darmon-Taylor, Cornell-Silverman, ...)

(ii) Multiple Eisenstein series and multiple q-zeta functions:

Herbert Gangl & Masanobu Kaneko & Don Zagier: Double zeta values and modular forms.
(online: https://people.mpim-bonn.mpg.de/zagier/)

Henrik Bachmann: Multiple Eisenstein series and q-analogues of multiple zeta values;
Henrik Bachmann & U.K.: A dimension conjecture for q-analogues of multiple zeta values.
(both available online: https://www.henrikbachmann.com)

(iii) Multiple Zeta values:

Jose Burgos-Gil & Javier Fresan: Multiple zeta values: from numbers to motives. (online:
http://javier.fresan.perso.math.cnrs.fr/mzv.pdf)
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Modular group

Definition
We denote the upper complex halfplane by

H “ t⌧ P C | Imp⌧q ° 0 u.

We use the notation ⌧ “ x ` iy, with x, y P R

We have an action

SL
2

pZq ˆ H Ñ H
´`

a b

c d

˘
, ⌧

¯
fiÑ

a⌧ ` b

c⌧ ` d
,

We call �p1q “ SL
2

pZq{˘1 the modular group (of Level 1).
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Fundamental domain

Proposition (Fundamental domain for �p1q)
Let

F “ t⌧ P H | ´

1

2
§ Rep⌧q §

1

2
and |⌧ | • 1 u

then we have

for any ⌧ P H there exist a � P �p1q such that �.⌧ P F .

if ⌧ and �.⌧ are elements of F , then ⌧, �.⌧ P BF .

! i
´!

F

11

2

0
´

1

2

´1
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Idea of proof: First we observe that the matrices

S “

ˆ
0 1

´1 0

˙
and T “

ˆ
1 1
0 1

˙

generate SL
2

pZq. We have

T ⌧ “ ⌧ ` 1 and S⌧ “

´1

⌧
.

The following diagram shows how the fundamental domain F is translated by different matrices in
SL

2

pZq.

Figure : Translations of the fundamental domain F .
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Given ⌧
0

there is some power T l0 of the translation T such that

⌧
1

:“ T l0⌧
0

P

!
⌧ P H

ˇ̌
ˇ ´

1

2
§ Im ⌧ §

1

2

)

Now using S we increase the imaginary part of ⌧
1

and continue the above procedure untill we
end in F .
It easy to see that the vertical boundary is identified via the translation T . Analogously the lower
part is identified with S. Observe that the corners and i have non-trivial stabilisers. l
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Aside: Modular curve

Remark
In fact there are natural bijections

�p1qzH „ // L{C˚ „ //
t complex elliptic curves u{ isomorphisms

⌧ ⇤
⌧

“ Z⌧ `Z E
⌧

“ C{⇤
⌧

Here L denotes the set of all lattices in C on which C˚ acts by scaling. The second bijection
uses the complex uniformisation of elliptic curves, i.e., for any elliptic curve
E : Y 2

“ X3

` AX ` B, there exists a lattice ⇤ and a complex isomorphism

C{⇤ Ñ E : Y 2

“ X3

` AX ` B

z fiÑ

`
ppz,⇤q, p1

pz,⇤q

˘
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HIT

Aside: Modular curve

Remark
The action of �p1q on H extends to a proper discontinous action

�p1q ˆ

´
H Y P1

pQq

¯
Ñ H Y P1

pQq.

Then by abstract topology and straightforward calculations we get an isomorphism

Xp1q :“ �p1qz

´
H Y P1

pQq

¯
Ñ P1

pCq

in such a way that
q :“ expp2⇡⌧q

is the local parameter at 8 P P1

pCq.
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Modular forms
Definition
A holomorphic function f : H Ñ C is called a modular form of weight k if

(i) fp

a⌧`b

c⌧`d

q “ pc⌧ ` dq

kfp⌧q for all ⌧ P H and all
`
a b

c d

˘
P SL

2

pZq

(ii) fp⌧q “

∞
n•0

a
n

qn, for q “ expp2⇡i⌧q

If f is a modular form of weight k we have by (i)

fp⌧ ` 1q “ fpT ⌧q “ fp⌧q ,

fp´1{⌧q “ F pS⌧q “ ⌧kfp⌧q ,

Thus any function in (i) has a Fourier expansion
∞

nPZ a
n

qn. The additional requirement in (ii)
is called

"f is holomorphic at infinity".

Since ´I P SL
2

pZq, a modular form of weight k satisfies fp⌧q “ p´1q

kfp⌧q. This shows
that there are no non-trivial modular forms of odd weight.

Definition
We denote the vector space of modular forms of weight k by M

k

. A modular form
f “

∞
n•0

a
n

qn with a
0

“ 0 is called cusp form (or parabolic form) and the vector space of
cusp forms is denoted by S

k
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Proposition
Modular forms with different weights are linearly independent over C.

Proof: Suppose we have nonzero modular forms f
1

, f
2

, . . . , f
m

with respective weights
k
1

† k
2

† ¨ ¨ ¨ † k
m

, such that they admit a nontrivial linear relation

↵
1

f
1

p⌧q ` ↵
2

f
2

p⌧q ` ¨ ¨ ¨ ` ↵
m

f
m

p⌧q “ 0 (1)

for all ⌧ P H and ↵
j

‰ 0 for j “ 1, . . . ,m. Replacing ⌧ by Sp⌧q and using the modularity, i.e.
f
j

pSp⌧qq “ ⌧kjf
j

p⌧q, we obtain

↵
1

⌧k1f
1

p⌧q ` ↵
2

⌧k2f
2

p⌧q ` ¨ ¨ ¨ ` ↵
m

⌧kmf
m

p⌧q “ 0

for all ⌧ P H. With Fourier expansions f
j

p⌧q “

∞8
n“0

a
pjq
n

qn where q “ e2⇡i⌧ , this is
equivalent to

8ÿ

n“0

´
↵
1

⌧k1ap1q
n

` ↵
2

⌧k2ap2q
n

` ¨ ¨ ¨ ` ↵
m

⌧kmapmq
n

¯
e2⇡in⌧ “ 0 .
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cry

Now we consider this equation for ⌧ “ iy (y ° 0), then

8ÿ

n“0

´
↵
1

piyq

k1ap1q
n

` ↵
2

piyq

k2ap2q
n

` ¨ ¨ ¨ ` ↵
m

piyq

kmapmq
n

¯
e´2⇡ny

“ 0 . (2)

For n ° 0 and any r • 0 we have lim
yÑ8 yre´2⇡ny

“ 0. Now let N be the smallest

integer, such that at least for one 1 § j § m we have apjq
N

‰ 0. Dividing (2) by e´2⇡Ny and
taking the limit y Ñ 8 we obtain

lim
yÑ8

↵
1

piyq

k1a
p1q
N

` ↵
2

piyq

k2a
p2q
N

` ¨ ¨ ¨ ` ↵
m

piyq

kma
pmq
N

“ 0 .

But the left-hand side of this equation is the limit y Ñ 8 of a non-constant polynomial in y,
which can not be zero and therefore a relation of the form (1) can not exist. l
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Eisenstein series

Proposition
Addition and multiplication of holomorphic functions induces the structure of a graded ring

M˚
pSL

2

pZqq “

à

k•0

M
k

pSL
2

pZqq

on the set of all modular forms.

Definition (Eisensteinseries)
Let k P N be even, then the Eisenstein series of weight k is defined by

G
k

p⌧q “

pk ´ 1q!

2p2⇡iqk

ÿ

m,n

1 1

pmz ` nq

k

, ⌧ P H.

Remark
∞1

m,n

abbreviates
∞

pm,nqPZ2{p0,0q
pk´1q!
2p2⇡iqk is a normalising factor (different for different authors!)
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Theorem
The Eisenstein series G

k

p⌧q are modular forms of weight k • 4 and they have the Fourier
expansion

G
k

p⌧q “

pk ´ 1q!

p2⇡iqk
⇣pkq `

8ÿ

n“1

�
k´1

pnqqn,

where �
k

pnq “

∞
d|n d

k is the divisor function of degree k, q “ e2⇡iz and

⇣pkq “

∞
n•1

1

n

k is the value of the Riemann zeta functions at k.

Remark
(i) By Euler’s relation we actually have G

k

P Qrrqss, indeed we have

G
k

p⌧q “ ´

B
k

2k
`

8ÿ

n“1

�
k´1

pnqqn.

(ii) Another common notation for the Eisenstein series is given by

E
k

p⌧q “ 1 ´

2k

B
k

8ÿ

n“1

�
k´1

pnqqn.
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Idea of Proof:
It is straightforward to show that for k • 4 the series G

k

p⌧q converges.
Using the convergence of G

k

p⌧q, we deduce

G
k

`a⌧ ` b

c⌧ ` d

˘
“

pk ´ 1q!

2p2⇡iqk

ÿ

m,n

1 1
´
ma⌧`b

c⌧`d

` n
¯
k

“ pc⌧ ` dq

k

pk ´ 1q!

2p2⇡iqk

ÿ

m,n

1 1

pmpa⌧ ` bq ` npc⌧ ` dqq

k

“ pc⌧ ` dq

k

pk ´ 1q!

p2⇡iqk

ÿ

m,n

1 1

ppma ` ncqz ` mb ` ndq

k

.

For
`
a b

c d

˘
P SL

2

pZq the set of all pma ` nc,mb ` ndq equals the set of all
pm,nq P Z2

zp0, 0q. We therefore have

G
k

p⌧q “ pc⌧ ` dq

´kG
k

´a⌧ ` b

c⌧ ` d

¯

for all
`
a b

c d

˘
P SL

2

pZq, i.e. G
k

transforms as a modular form of weight k for SL
2

pZq.
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Lemma (Lipschitz-formula)

ÿ

nPZ

1

pz ` nq

k

“

p´2⇡iqk

pk ´ 1q!

8ÿ

r“1

rk´1e2⇡irz.

The Lipschitz formula follows either from the Poisson summation or from the Taylor expansion of
⇡

tanp⇡xq (Exercise!).

Now the Fourier expansion of G
k

follows

G
k

p⌧q “

pk ´ 1q!

2p2⇡iqk

ÿ

n‰0

1

nk

`

ÿ

m‰0

pk ´ 1q!

2p2⇡iqk

ÿ

nPZ

1

pmz ` nq

k

“

pk ´ 1q!

p2⇡iqk

8ÿ

n“1

1

nk

`

8ÿ

m“1

8ÿ

r“1

rk´1e2⇡irmz

“

pk ´ 1q!

p2⇡iqk
⇣pkq `

8ÿ

n“1

�
k´1

pnqqn,

where �
k

pnq “

∞
d|n d

k is the divisor function of degree k, q “ e2⇡iz and

⇣pkq “

∞
n•1

1

n

k is the value of the Riemann zeta functions at k.
l
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←

c-

Lipschitz for
ME

uniteadof z

G
4

p⌧q “

1

240
` q ` 9q2 ` 28q3 ` 73q4 ` 126q5 ` ¨ ¨ ¨

G
6

p⌧q “ ´

1

504
` q ` 33q2 ` 244q3 ` 1057q4 ` ¨ ¨ ¨

G
8

p⌧q “

1

480
` q ` 129q2 ` 2188q3 ` ¨ ¨ ¨

Later we will prove the identity 120G2

4

“ G
8

and this implies Hurwitz identity

�
7

pnq “ �
3

pnq ` 120
n´1ÿ

m“1

�
3

pmq�
3

pn ´ mq

for all n • 0. For example we have

�
7

p3q “ 2188 “ 28 ` 120p1 ¨ 9 ` 9 ¨ 1q “ 28 ` 120 ¨ 18 “ 28 ` 2160
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Eisenstein series of weight 2
We define the Eisenstein series G

2

p⌧q by its Fourier series

G
2

p⌧q “ ´

1

24
` q ` 3q2 ` 4q3 ` 7q4 ` 6q5 ` 12q6 ` ¨ ¨ ¨

In fact, for the weight 2 case one has to inforce convergence by means of the Hecke trick:

G˚
2

p⌧q “ ´

1

8⇡2

lim
sÑ0

ÿ

m,n

1 1

pc⌧ ` dq

2

ys

|c⌧ ` d|

2s

.

The function G˚
2

transforms as a modular form of weight 2. It satisfies

G˚
2

p⌧q “ G
2

p⌧q `

8

⇡y
.

Now, using Im
´

a⌧`b

c⌧`d

¯
“

Im ⌧

|c⌧`d|2 , we deduce the functional equation w.r.t.
`
a b

c d

˘
P SL

2

pZq

G
2

ˆ
a⌧ ` b

c⌧ ` d

˙
“ pc⌧ ` dq

2G
2

p⌧q ´

cpc⌧ ` dq

4⇡i
.
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Gk & q-series

We have 8ÿ

n“1

�
k´1

pnqqn “

8ÿ

n“1

nk´1qn

1 ´ qn
,

Another not so well-known identity is given by a q-average of negative polylogarithms. Let

Li´s

“

8ÿ

n“1

nszn “

zP
s

pzq

p1 ´ zq

s`1

where P
s

pzq are the Eulerian polynomials1, then we obtain

8ÿ

n“1

�
k´1

pnqqn “

8ÿ

n“1

qnP
k´1

pqnq

p1 ´ qnq

k

1e.g. P0ptq “ P1ptq “ t, P2ptq “ t2 ` t, P3 “ t3 ` 4t2 ` t, ...
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← a - gu

SE IN

r
'

← f-g) hFoafa : Eulerian
poly

Gk is a q-zeta value

Now using P
s

p1q “ s! and

lim
qÑ1

p1 ´ qnq

p1 ´ qq

n

“ lim
qÑ1

`
1 ` q ` ... ` qn´1

˘
“ n

we get

lim
qÑ1

p1 ´ qq

kG
k

pqq “ lim
qÑ1

8ÿ

n“1

qnP
k´1

pqnq

`
1´q

n

p1´qqn
˘
k

“ pk ´ 1q!⇣pkq.
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Gangs

¢
q - integers

\

yThouitsfire
"

Macadamia

Remark
There is a natural map

tmodular forms f of weight k u

„ //
tF : L Ñ C |F pc⇤q “ c´kF p⇤q, @c P C˚, ⇤ P L u

given by

fp

!
1

!
2

q :“ !´k

2

F pZ!
1

`Z!
2

q

The Eisenstein series G
k

p⌧q corresponds to the homogenous lattice function

G
k

p⇤q “

ÿ

�P⇤
�‰0

1

�k

.
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then art : modular forms are sections
of a line bundle on the modular carve

Discriminant
Definition
The discriminant (or Delta funtion) �p⌧q is defined by

�p⌧q “ q
8π

n“1

`
1 ´ qn

˘
24

where ⌧ P H and q “ e2⇡i⌧ .

Theorem
�p⌧q is a modular form of weight 12.

Proof: We have

d

d ⌧
log

`
�p⌧q

˘
“

�1
p⌧q

�p⌧q

“

d

d ⌧

˜
2⇡i⌧ ` 24

8ÿ

n“1

log
`
1 ´ qn

˘
¸

“ 2⇡i

˜
1 ´ 24

8ÿ

n“1

nqn

1 ´ qn

¸
“ ´48⇡i

¨

˝
´

1

24
`

8ÿ

n“1

¨

˝
ÿ

r|n
r

˛

‚qn

˛

‚

“ ´48⇡iG
2

p⌧q.
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Now by means of the transformation laws for G
2

, we derive for � “

`
a b

c d

˘
P SL

2

pZq

1

pc⌧ ` dq

2

�1
´

a⌧`b

c⌧`d

¯

�
´

a⌧`b

c⌧`d

¯
“

�1
p⌧q

�p⌧q

` 12
c

c⌧ ` d
,

hence
d

d ⌧
log

ˆ
�

ˆ
a⌧ ` b

c⌧ ` d

˙˙
“

d

d ⌧
log

`
�p⌧qpc⌧ ` dq

12

˘
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In other words we have

�

ˆ
a⌧ ` b

c⌧ ` d

˙
“ pc⌧ ` dq

12�p⌧q ¨ 
�

for some 
�

P C. We now show that 
�

“ 1 for all � P SL
2

pZq.
We have �p⌧q “ �p⌧ ` 1q, thus 

�

“ 1. Furthermore for S “

`
0 ´1

1 0

˘
we get

�piq “ �pSiq “ �

ˆ
´

1

i

˙
“ p´iq12�piq ¨ 

S

thus we obtain 
S

“ 1. Since T and S generate SL
2

pZq, we finished the proof. l
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T

Theorem (Valence formula)
For a non-zero modular form f of weight k we have

v8pfq `

1

2
v
i

pfq `

1

3
v
!

pfq `

ÿ

pPSL2pZqzH
p‰i,!

v
p

pfq “

k

12
.

Idea of proof: Use Cauchy’s argument principle: You get the (order) of the zeros and poles of f in
SL

2

pZqzH by integrating the logarithmic derivative f 1
{f around the boundary of the

fundamental domain F .

Figure : The contour of integration

l
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Corollary
Let k P N be an integer. Then

i) M
0

“ C,

ii) If k “ 2, k † 0 or if k is odd then M
k

“ 0.

iii) If k P t4, 6, 8, 10, 14u, then M
k

“ CE
k

.

iv) If k † 12 or k “ 14 then S
k

“ 0.

v) S
12

“ C� and if k ° 12 then S
k

“ � ¨ M
k´12

.

vi) If k • 4 then M
k

“ CE
k

‘ S
k

.

Proof:

i) Only constants have no zero.
ii) We already know this for odd k and there is no solution for the others.
iii) When k P t4, 6, 8, 10, 14u, then the only solutions to the valence formula are:
k “ 4 : v!pfq “ 1 and all other vppfq “ 0.
k “ 6 : vipfq “ 1 and all other vppfq “ 0.
k “ 8 : v!pfq “ 2 and all other vppfq “ 0.

k “ 10 : v!pfq “ vipfq “ 1 and all other vppfq “ 0.
k “ 14 : v!pfq “ 2, vipfq “ 1 and all other vppfq “ 0.

Now, if f
1

, f
2

P M
k

for any such k, then f1

f2
is a modular form of weight 0, which by i)

must be constant. Therefore f
1

and f
2

are proportional to E
k

P M
k

.
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Corollary
Let k P N be an integer. Then

i) M
0

“ C,

ii) If k “ 2, k † 0 or if k is odd then M
k

“ 0.

iii) If k P t4, 6, 8, 10, 14u, then M
k

“ CE
k

.

iv) If k † 12 or k “ 14 then S
k

“ 0.

v) S
12

“ C� and if k ° 12 then S
k

“ � ¨ M
k´12

.

vi) If k • 4 then M
k

“ CE
k

‘ S
k

.

Proof:

iv) If f P S
k

we have v8pfq ° 0, which is impossible for k † 12 or k “ 14.

v We know that v8p�q “ 1 and by the valenc formula this must be the only zero of �.
Therefore for any f P S

k

the function f

�

is a modular form of weight k ´ 12.

vi) We can substract the constant term of any modular form f P M
k

by adding a suitable
multiple of E

k

. l
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Theorem (Dimension formula)
For an even positiver integer k we have

dimCMk

“

#
t k

12

u ` 1 , k ı 2 mod 12

t k

12

u , k ” 2 mod 12
.

Proof: This will now follow by induction on k from the results in previous Proposition. For k † 12
the above dimension formula is already proven. Combing the results of previous Proposition we
have

M
k`12

“ CE
k`12

‘ � ¨ M
k

and since t k

12

u ` 1 “ tk`12

12

u the statement follows inductively.

k 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

dimCMk

1 0 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4

Figure : Dimension of Mk for even 0 § k § 36.
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