
Fachbereich Mathematik
Algebra und Zahlentheorie

Prof. Dr. Ulf Kühn

Algebra 2 Summer Semester 2020 Exercises

Discussion on 09.07.: Ex 10.1 - Ex 10.3
Submit your solutions for the exercises 11.1-11.- by Tuesday, 14.07. Everybody should
hand in his/her own solution.

Keywords for the week 06.07.-12.07.: Tensor algebra, universal enveloping algebra.

Exercise 11.2?: (5* points)
Let k be a ring, M a k-module and g be a Lie algebra over k. Prove that for every
associative k-algebra A, we have the following isomorphisms:

(i) Homk−mod(M,A) ' Homk−alg(T (M), A)

(ii) HomLie(g,Lie(A)) ' Homk−alg(U(g), A)

Exercise 11.1?: (5* points)
Let k be a ring, g be a Lie algebra over k and M a g-module. Show that we have

(i) H∗(g,M) ' TorU(g)
∗ (k,M)

(ii) H∗(g,M) ' Ext∗U(g)(k,M)
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Keywords for the week 29.06.-05.07.: Lie algebra, free Lie algebra, modules over a Lie
algebra, Lie algebra (co-)homology.

Exercise 10.3: (6 points)
Let f be the free Lie algebra over a ring k on a set X and M an f -module. Show that:

(i) H0(f, k) = H0(f, k) = k

(ii) H1(f, k) =
⊕
x∈X

k, H1(f, k) =
∏
x∈X

k

(iii) Hn(f,M) = Hn(f,M) = 0 for all n ≥ 2.

Exercise 10.2: (3+3* points)
Let g be a Lie algebra.

a) Prove that the category g−mod of g-modules is an abelian category.

b*) Show that g−mod has enough projectives and injectives.

Exercise 10.1: (3+3* points)
Let k be a ring and A a associative k-Algebra.

a) Prove that A together with the commutator bracket

[a, b] = ab− ba ∀a, b ∈ A

is a Lie Algebra. Deduce that we have a functor

Lie : Algk → LieAlgk.

b*) Determine the subgroups of Glm(k) corresponding to the Lie algebras om(k), tm(k), nm(k)
and slm(k).
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Keywords for the week 22.06.-28.06.: Double complex, total complex, extensions and Baer
sum, Yoneda product.

Exercise 9.2: (8 points)
Let R be a ring and M,N be R-modules. Show that

a) TorRk (M,N) ' T̃or
R

k (M,N) for all k ≥ 0.

b) ExtkR(M,N) ' Ẽxt
k

R(M,N) ' Ext’kR(M,N) for all k ≥ 0.

Exercise 9.1: (4*+4 points)
Let C be an abelian category and M,N ∈ ob(C).
a*) Show that for all n ≥ 1, Exn(M,N) is an abelian group with the composition +
de�ned in the lecture.

b*) Assume that C has enough projectives. Prove that there is a natural isomorphism of
functors Exn ' Extn.

c) Show that the Yoneda product de�ned in the lecture in a well-de�ned, bilinear and
associative multiplication.
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Keywords for the week 15.06.-21.06.: Resolutions, derived functors, Tor functor, Ext
functor.

Exercise 8.3: (6 points)
Let A be an abelian category with enough projectives and F : A → B a right-exact,
additive functor of abelian categories. Suppose we have an exact sequence

0→M → Pm−1 → Pm−2 → · · · → P0 → A→ 0

in A, where all Pi, i = 0, ...,m, are projective. Show that for n > m, there are canonical
isomorphisms

LnF (A) ' Ln−mF (M)

and we have an exact sequence

0→ LmF (A)→ F (M)→ F (Pm−1).

Formulate and prove the dual statement for left-exact functors and injective objects.

Exercise 8.2: (3+3 points)
Let k be a �eld and R = k[x]/(xn), n ≥ 1. Then we can consider k as a R-module, where
x acts by zero on k.

a) Find a projective and injective resolution for the R-module k.

b*) Compute the Tor groups TorRm(k, k) and the Ext groups ExtmR (k, k) for all m ≥ 0.

Exercise 8.1: (6 points)
a) Let m,n ≥ 1. Compute the Ext groups ExtkZ(Z/nZ,Z/mZ) for all k ≥ 0.

b) Let G be a �nitely generated, abelian group. Determine the Tor groups TorZk (Q, G)
and the Ext groups ExtkZ(G,Q) for all k ≥ 0.

c) Let R be a principal ideal domain andM,N be R-modules. Show that ExtkR(N,M) = 0
for all k ≥ 2.
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Keywords for the week 08.06.-14.06.: Category, opposite category, functors, products and
coproducts in a category, additive category, kernels and cokernels in a category, abelian
category, projective and injective objects in a category.

Exercise 7.3: (5 points)
Let C,D be abelian categories. An adjunction F : C ↔ D : G is a pair of functors
F : C → D and G : D → C equipped with bijections

ρA,B : HomD(F (A), B)→ HomC(A,G(B))

for all objects A ∈ ob(C), B ∈ ob(D), such that for all morphisms f : A′ → A in C and
g : B → B′ in D the following diagram commutes:

HomD(F (A), B)
−◦F (f)

//

ρA,B

��

HomD(F (A′), B)
g◦−
//

ρA′,B
��

HomD(F (A′), B′)

ρA′,B′

��
HomC(A,G(B))

−◦f
// HomC(A

′, G(B))
G(g)◦−

// HomC(A
′, G(B′))

The functor F is called a left adjoint to G and G is called a right adjoint to F .

If F,G are additive functors and all bijections ρA,B are group isomorphisms, we call the
adjunction F : C ↔ D : G additive.

(a) Let F : C ↔ D : G be an additive adjunction. Prove that the functor F is right exact
and G is left exact.

(b) Let R be a ring and M an R-module. Show that there is an additive adjunction

−⊗RM : ModR ←→ ModR : Hom(M,−).

Exercise 7.2: (5 points)
Let C be an abelian category. Prove that the projective elements in C are exactly the
injective elements in the opposite category Cop.

Exercise 7.1: (5 points)
Let k be a �eld and V,W be k-vector spaces.

(a) Show that the de�nition of the kernel and cokernel of a linear map f : V → W is
compatible with the de�nition of kernels and cokernels from the lecture.

(b) Prove that the category of k-vector spaces is an abelian category, i.e., show that
(i) every monomorphism is the kernel of a morphism.
(ii) every epimorphism is the cokernel of a morphism.
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Keywords for the week 25.05.-31.05.: G-modules, group cohomology.

Exercise 6.3: (6 points)
Let (A∗, dA), (B∗, dB) be complexes. We de�ne the complex (A[1]∗, dA[1]) by setting
A[1]n = An+1 and dnA[1] = −dn+1

A for all n ∈ Z. For a morphism f ∗ : A∗ → B∗ of
complexes, the cone of f is given by the complex

cone(f) = A[1]⊕B : · · · d
n−1

−→ An+1 ⊕Bn dn−→ An+2 ⊕Bn+1 dn+1

−→ · · · ,

where the di�erential d is de�ned by

dn(a, b) = (−dA(a), fn+1(a) + dB(b)), (a, b) ∈ An+1 ⊕Bn.

Prove that f ∗ : A∗ → B∗ is a quasi-isomorphism (i.e., the induced morphisms of f ∗ on
the cohomology groups are isomorphisms), i� cone(f) is an exact complex.

Exercise 6.2: (6 points)
Let L|K be a �nite Galois extension and G = Gal(L|K). Show that H1(G,L×) = 0.

Exercise 6.1: (6 points)
Consider the space of homogeneous polynomials Q[X, Y ]k of weight k ≥ 0 equipped with
the Gl2(Z)-action given by

Gl2(Z)×Q[X, Y ]k → Q[X, Y ]k,
((

a b
c d

)
, f(X, Y )

)
7→ f(aX + bY, cX + dY )

and let G =
〈(

0 1
1 0

)〉
. Write down the complex C∗(G,Q[X, Y ]k) and compute the coho-

mology groups H0(G,Q[X, Y ]k) and H
1(G,Q[X, Y ]k).
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Keywords for the week 18.05.-24.05.:Homology, cohomology, de Rham cohomology.

Exercise 5.3: (6 points)
Let Γ be a �nite, connected graph with vertices (e1, . . . , eE) and edges (k1, . . . , kK). We
endow the edges with an orientation and obtain the incidence matrix IΓ ∈ MatE×K(Z) of
Γ in the following way:

(IΓ)ij =


+1 if kj starts in ei

−1 if kj ends in ei

0 else.

Consider the complex C∗ given by C0 = e1Z⊕ . . .⊕eEZ, C1 = k1Z⊕ . . .⊕kKZ and Cn = 0
for all n ≥ 2 endowed with the di�erential d1 : C1 → C0 given by multiplication with IΓ

and dn = 0 for n 6= 1. Prove the following statements:

a) (C∗, d) is a complex.

b) The only nonzero homology modules are H0(C∗) and H1(C∗). We have rk(H0(C∗)) = 1
and rk(H1(C∗)) = K − E + 1.

c) The number of (simple) closed paths in Γ is K − E + 1.

Exercise 5.2: (6 points)
Let N ∈ N. An (abstract) simplicial complex K on {0, 1, ..., N} is a collection of subsets
of {0, 1, ..., N}, such that for every σ ∈ K and τ ⊆ σ, we have τ ∈ K. For every n ≥ 0,
de�ne the set of n-simplices as

Kn := {σ ∈ K | |σ| = n+ 1}.

Then any n-simplex σ ∈ Kn can be uniquely expressed as σ = {x0, x1, ..., xn}, where
0 ≤ x0 < x1 < · · · < xn ≤ N . For every i = 0, ..., n, the face map is given by

∂i : Kn → Kn−1, {x0, x1, ..., xn} 7→ {x0, ..., xi−1, xi+1, ..., xn}.

For a ring R set

Cn(K,R) :=
⊕
σ∈Kn

Reσ, n ≥ 0,

i.e., Cn(K,R) is the free R-module on Kn with basis elements labelled by eσ, and de�ne

dn : Cn(K,R)→ Cn−1(K,R), eσ 7→
n∑
i=0

(−1)ie∂iσ, n ≥ 1.

a) Verify that

· · · dn+1−→ Cn(K,R)
dn−→ Cn−1(K,R)

dn−1−→ · · · d2−→ C1(K,R)
d1−→ C0(K,R)→ 0

is a complex. It is called the simplicial chain complex.
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b) Determine the simplicial chain complex with coe�cients in R for the simplicial complex
K on {0, 1, 2, 3} given by all subsets of cardinality ≤ 2.
Compute the homology groups Hn(K,R) = ker(dn)/ im(dn+1).

c*) For any (geometric) simplicial complex one can construct an abstract simplicial com-
plex by only retaining the sets of vertices. Prove that, conversly, for any �nite abstract
simplicial complex K one can construct a (geometric) simplicial complex K ′.

Exercise 5.1: (6 points)
Let M,N be smooth manifolds.

a*) Show that the dimension of the 0-th de Rham cohomology group H0
dR(M) equals the

number of connected components of M .

b*) Let f, g : M → N be homotopic, smooth maps. Prove that the induced maps
f̃ , g̃ : Ω∗(N) → Ω∗(M) of complexes (on Ωp(N) they are given by the pullbacks f ∗, g∗)
are homotopic. In particular, we have Hp

dR(f) = Hp
dR(g) for all p ≥ 0.

c) Compute the de Rham cohomology groups for the n-dimensional sphere Sn.
Hint: Use the result for S1 from the lecture and induction.

d) Let v, w ∈ Rn. Compute the de Rham cohomology groups for Rn\{v} and Rn\{v, w}.
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Keywords for the week 11.05.-17.05.: Five Lemma, Snake Lemma, complexes.

Exercise 4.5: (2 points)
Let 0 → V1 → V2 → . . . → Vn → 0 be an exact sequence of �nite dimensional vector
spaces. Show that

∑
(−1)i dimVi = 0.

Exercise 4.4: (3 points)

Let . . . −→Mr−1
αr−→Mr

αr+1−→Mr+1 −→ . . . be an exact sequence of modules. Prove that
the induced short sequences 0→ Lr →Mr → Lr+1 → 0 are exact, where Lr = imαr.

Exercise 4.3: (5 points)
Consider the following commutative diagram of R-modules

0

��

0

��

0

��
0 //M ′

1 γ1
//

α′

��

M1 ρ1
//

α

��

M ′′
1

//

α′′

��

0

0 //M ′
2 γ2

//

β′

��

M2 ρ2
//

β

��

M ′′
2

//

β′′

��

0

0 //M ′
3 γ3

//

��

M3 ρ3
//

��

M ′′
3

//

��

0

0 0 0

where all of the columns and the middle row are exact. Show that the �rst row is exact,
i� the third row is exact.

Exercise 4.2: (6 points)
Let R be a ring and I, J ⊆ R be ideals.

(a) Prove that there is a short exact sequence of R-modules

0→ I ∩ J → I ⊕ J → I + J → 0.

(b) Use the Snake Lemma to deduce from part (a) an exact sequence

0→ R/(I ∩ J)→ R/I ⊕R/J → R/(I + J)→ 0.

(c) Show that the sequences of (a) and (b) are in general not split exact.

Exercise 4.1: (4 points)
Let N be a submodule of a �nitely generated R-module M .
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(a) Show that N is not �nitely generated in general.

(b) Prove that N is �nitely generated if it is the kernel of a surjective R-module homo-
morphism Φ : M → Rn for some n ∈ N.

Hint: Show and use that the sequence 0→ N →M
Φ→ Rn → 0 is split exact.
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Keywords for the week 04.05.-10.05.: projective modules, �at modules, injective modules.

Exercise 3.4: (6 points)
a) Give an example for a short exact sequence

0→ A→ B → C → 0

of R-modules, which do not split.

b) Can you give an example as in part a), such that only A resp. B resp. C is free?

c) Is there an example as in part a), such that two resp. three of the modules A, B, C
are free?

Exercise 3.3: (6 points)
Prove or disprove the following statements:

a) Projective modules are �at.

b) Flat modules are projective.

c) Free modules are projective.

d) Flat modules are free.

e) Free modules are injective.

Exercise 3.2: (6 points)
Show that for a R-module M the following conditions are equivalent:

i) For every exact sequence 0 → N1 → N2 of R-modules and any module morphism
f : N1 → M , there exists a morphism g : N2 → M , such that the following diagram
commutes:

0 // N1

f
��

// N2

g

}}
M

ii) Every short exact sequence 0→M → N1 → N2 → 0 of R-modules splits.

iii) For every short exact sequence 0 → T ′ → T → T ′′ → 0 of R-modules, also the
sequence

0→ Hom(T ′′,M)→ Hom(T,M)→ Hom(T ′,M)→ 0

is exact.

A module M satisfying those properties is called an injective module.

Exercise 3.1: (6 points)
Let R = Z[

√
−5] = {a+ b

√
−5 ∈ C | a, b ∈ Z }. Further, let A1 be the ideal generated by

1 +
√
−5 and 2 in R and A2 the ideal generated by 2.

Which of the R-modules A1, A2, A1A1 and A1A2 are projective resp. �at?
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Keywords for the week 27.04.-03.05.: Tensor product, tensor algebra, localisation.

Exercise 2.5: (2 points)
Let R be a principal ideal domain and K its �eld of fractions, i.e., we have K = S−1R
where S = R\{0}. Show, ifM is a �nitely generated R-module, then we have S−1M ∼= Kn

where n is the rank of M/T (M).

Exercise 2.4: (2 + 2∗ points)
a) Let A be an integral domain and S ⊂ A a multiplicative subset. Show that the
assignments

q→ qS−1 and Q→ Q ∩ A

give a 1-1-correspondence between the prime ideals q ⊆ A \ S of A and the prime ideals
Q of AS−1.

b*) Let A be an integral domain and p a prime ideal of A. Prove that the ring S−1A,
where S = A \ p, is a local ring.

Exercise 2.3: (2 points)
Let V be a k-vector space of dimension n. Show that the tensor algebra T (V ) is isomorphic
to the free algebra k〈X〉 over an alphabet X = {x1, ..., xn} with n letters.
Tip: See L. Foissy - Algebres de Hopf combinatoires.

Exercise 2.2: (4 + 2 + 2∗ points)

Let (∗) : 0 //M ′ f //M
g //M ′′ // 0 be a short exact sequence of A-modules.

Prove the following statements:

a) For every A-module F , the sequence (�tensoring with F ⊗A −�)

F ⊗AM ′ f // F ⊗AM
g // F ⊗AM ′′ // 0

is also exact.

b) If (∗) splits, then for every A-module F , the sequence

0 // F ⊗AM ′ f // F ⊗AM
g // F ⊗AM ′′ // 0

is also exact.

c∗). What changes, if we apply −⊗A F to (∗)?

Exercise 2.1: (8 points)

Let (∗) : 0 //M ′ f //M
g //M ′′ // 0 be a short exact sequence of A-modules.

a) We say that (∗) splits if one of the following equivalent conditions i)-iii) is satis�ed:

i) There is a morphism φ ∈ HomA(M ′′,M), such that g ◦ φ = id (�g has a section�).
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ii) There is a morphism ψ ∈ HomA(M,M ′), such that ψ ◦ f = id (�f has a retract�).

iii) There is an isomorphism h : M →M ′⊕M ′′, such that the following diagram commutes

0 //M ′

id
��

f //M

h
��

g //M ′′

id
��

// 0

0 //M ′ ι1 //M ′ ⊕M ′′ pr2 //M ′′ // 0

,

where ι1 is the canonical embedding and pr2 is the canonical projection onto the second
component.
Show that i) -iii) are equivalent.

b) Prove, if (∗) splits, then there are isomorphismsM ∼= im f⊕kerψ andM ∼= ker g⊕imφ.

Exercise 2.0 = old Exercise 1.3 (3 points)
Compute the following tensor products:

a) Z/nZ⊗Z Z/mZ.
b) Z/nZ⊗Z Q.
c) Q⊗Z R.
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Keywords for the week 20.04.-26.04.: Rings, integral domain, units, modules, direct sum,
direct product, free modules, rank, isomorphism theorems.

Exercise 1.6: (6 points)
a) Let f : A→ B be a ring morphism. Show that B is an A-module.

b) Show that any module is a Z-module.

Exercise 1.5: (2 points)
Prove or disprove the following statements

a) The direct product of rings
∏

i∈I Ri is again a ring.

b) The direct sum of rings
⊕

i∈I Ri is again a ring.

Exercise 1.4: (8 points)
Prove the isomorphism theorems:

a) Let f : M → N be a R-module morphism. Then the is a canonical isomorphism
M/ ker f ∼= im f .

b) Let N,N ′ ⊂ M be submodules. Then there exists a canonical isomorphism (N +
N ′)/N ∼= N ′/(N ∩N ′).
c) If N ′ ⊂ N ⊂M are submodules, then we have (M/N ′)/(N/N ′) ∼= M/N .

d) Compute the above statements a)-c) for N ′ = 6Z, N = 3Z and M = Z.

Exercise 1.3: (moved to next week)

Exercise 1.2?: (3 points)
Let R = Z[

√
−5] = {a+ b

√
−5 ∈ C | a, b ∈ Z }. Further, let A1 be the ideal generated by

1 +
√
−5 and 2 in R and A2 the ideal generated by 2.

Compute the R-modules A1 + A2, A1A1 and A1A2. Which of these modules is free?

Exercise 1.1?: (2 points)
Let k be a �eld. Prove that a k[X]-moduleM is equivalent to a k-vector space V equipped
with an endomorphism φ : V → V .
Tip: Multiplying by

∑
aix

i on M is equivalent to applying
∑
aiφ

i on V .
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