

Algebra 2 Summer Semester 2020 Exercises

Discussion on 09.07.: Ex 10.1 - Ex 10.3

Submit your solutions for the exercises 11.1-11.- by Tuesday, 14.07. Everybody should hand in his/her own solution.

Keywords for the week 06.07.-12.07.: Tensor algebra, universal enveloping algebra.

Exercise 11.2^* :

 (5^* points)

Let k be a ring, M a k-module and \mathfrak{g} be a Lie algebra over k. Prove that for every associative k-algebra A, we have the following isomorphisms:

> $\operatorname{Hom}_{k-\operatorname{mod}}(M, A) \simeq \operatorname{Hom}_{k-\operatorname{alg}}(\mathcal{T}(M), A)$ (i)(ii) $\operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, \operatorname{Lie}(A)) \simeq \operatorname{Hom}_{k-\operatorname{alg}}(\mathcal{U}(\mathfrak{g}), A)$

Exercise 11.1*:

 (5^* points) Let k be a ring, \mathfrak{g} be a Lie algebra over k and M a \mathfrak{g} -module. Show that we have

(i)
$$H_*(\mathfrak{g}, M) \simeq \operatorname{Tor}^{\mathcal{U}(\mathfrak{g})}_*(k, M)$$

(ii) $H^*(\mathfrak{g}, M) \simeq \operatorname{Ext}^*_{\mathcal{U}(\mathfrak{g})}(k, M)$

Universität Hamburg · Tor zur Welt der Wissenschaft

Keywords for the week 29.06.-05.07.: Lie algebra, free Lie algebra, modules over a Lie algebra, Lie algebra (co-)homology.

Exercise 10.3:

Let f be the free Lie algebra over a ring k on a set X and M an f-module. Show that:

(i)
$$H_0(f,k) = H^0(f,k) = k$$

(ii)
$$H_1(f,k) = \bigoplus_{x \in X} k, \quad H^1(f,k) = \prod_{x \in X} k$$

(iii)
$$H_n(f,M) = H^n(f,M) = 0 \text{ for all } n \ge 2.$$

Exercise 10.2:

Let \mathfrak{g} be a Lie algebra.

a) Prove that the category \mathfrak{g} – mod of \mathfrak{g} -modules is an abelian category.

b^{*}) Show that \mathfrak{g} – mod has enough projectives and injectives.

Exercise 10.1:

Let k be a ring and A a associative k-Algebra.

a) Prove that A together with the commutator bracket

$$[a,b] = ab - ba \quad \forall a,b \in A$$

is a Lie Algebra. Deduce that we have a functor

Lie : $Alg_k \rightarrow LieAlg_k$.

b*) Determine the subgroups of $Gl_m(k)$ corresponding to the Lie algebras $o_m(k)$, $t_m(k)$, $n_m(k)$ and $sl_m(k)$.

(6 points)

 $(3+3^* \text{ points})$

 $(3+3^* \text{ points})$

Keywords for the week 22.06.-28.06.: Double complex, total complex, extensions and Baer sum, Yoneda product.

Exercise 9.2:

Let R be a ring and M, N be R-modules. Show that

a) $\operatorname{Tor}_k^R(M,N) \simeq \widetilde{\operatorname{Tor}}_k^R(M,N)$ for all $k \ge 0$. b) $\operatorname{Ext}_{R}^{k}(M, N) \simeq \widetilde{\operatorname{Ext}}_{R}^{k}(M, N) \simeq \operatorname{Ext}_{R}^{k}(M, N)$ for all $k \ge 0$.

Exercise 9.1:

 (4^*+4 points)

(8 points)

Let \mathcal{C} be an abelian category and $M, N \in ob(\mathcal{C})$.

a^{*}) Show that for all $n \geq 1$, $\operatorname{Ex}^{n}(M, N)$ is an abelian group with the composition + defined in the lecture.

 b^*) Assume that C has enough projectives. Prove that there is a natural isomorphism of functors $\operatorname{Ex}^n \simeq \operatorname{Ext}^n$.

c) Show that the Yoneda product defined in the lecture in a well-defined, bilinear and associative multiplication.

Keywords for the week 15.06.-21.06.: Resolutions, derived functors, Tor functor, Ext functor.

Exercise 8.3:

Let \mathcal{A} be an abelian category with enough projectives and $F: \mathcal{A} \to \mathcal{B}$ a right-exact, additive functor of abelian categories. Suppose we have an exact sequence

$$0 \to M \to P_{m-1} \to P_{m-2} \to \dots \to P_0 \to A \to 0$$

in \mathcal{A} , where all P_i , i = 0, ..., m, are projective. Show that for n > m, there are canonical isomorphisms

$$L_n F(A) \simeq L_{n-m} F(M)$$

and we have an exact sequence

$$0 \to L_m F(A) \to F(M) \to F(P_{m-1}).$$

Formulate and prove the dual statement for left-exact functors and injective objects.

Exercise 8.2:

(3+3 points)Let k be a field and $R = k[x]/(x^n)$, $n \ge 1$. Then we can consider k as a R-module, where x acts by zero on k.

a) Find a projective and injective resolution for the R-module k.

b^{*}) Compute the Tor groups $\operatorname{Tor}_m^R(k,k)$ and the Ext groups $\operatorname{Ext}_R^m(k,k)$ for all $m \ge 0$.

Exercise 8.1:

(6 points)

(6 points)

a) Let $m, n \geq 1$. Compute the Ext groups $\operatorname{Ext}_{\mathbb{Z}}^{k}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ for all $k \geq 0$. b) Let G be a finitely generated, abelian group. Determine the Tor groups $\operatorname{Tor}_k^{\mathbb{Z}}(\mathbb{Q},G)$ and the Ext groups $\operatorname{Ext}_{\mathbb{Z}}^{k}(G, \mathbb{Q})$ for all $k \geq 0$.

c) Let R be a principal ideal domain and M, N be R-modules. Show that $\operatorname{Ext}_{R}^{k}(N, M) = 0$ for all $k \geq 2$.

Keywords for the week 08.06.-14.06.: Category, opposite category, functors, products and coproducts in a category, additive category, kernels and cokernels in a category, abelian category, projective and injective objects in a category.

Exercise 7.3: (5 points) Let \mathcal{C}, \mathcal{D} be abelian categories. An *adjunction* $F : \mathcal{C} \leftrightarrow \mathcal{D} : G$ is a pair of functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ equipped with bijections

$$\rho_{A,B} : \operatorname{Hom}_{\mathcal{D}}(F(A), B) \to \operatorname{Hom}_{\mathcal{C}}(A, G(B))$$

for all objects $A \in ob(\mathcal{C})$, $B \in ob(\mathcal{D})$, such that for all morphisms $f : A' \to A$ in \mathcal{C} and $g : B \to B'$ in \mathcal{D} the following diagram commutes:

$$\begin{array}{c|c} \operatorname{Hom}_{\mathcal{D}}(F(A), B) \xrightarrow[-\circ F(f)]{} \operatorname{Hom}_{\mathcal{D}}(F(A'), B) \xrightarrow[g\circ -]{} \operatorname{Hom}_{\mathcal{D}}(F(A'), B') \\ & & & \\ \rho_{A,B} & & & \\ \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array}$$
 \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c|c} \rho_{A',B} & & \\ \end{array} \end{array} \\ \bigg \\ \end{array} \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\

The functor F is called a *left adjoint* to G and G is called a *right adjoint* to F.

If F, G are additive functors and all bijections $\rho_{A,B}$ are group isomorphisms, we call the adjunction $F : \mathcal{C} \leftrightarrow \mathcal{D} : G$ additive.

(a) Let $F : \mathcal{C} \leftrightarrow \mathcal{D} : G$ be an additive adjunction. Prove that the functor F is right exact and G is left exact.

(b) Let R be a ring and M an R-module. Show that there is an additive adjunction

 $-\otimes_R M : \operatorname{Mod}_R \longleftrightarrow \operatorname{Mod}_R : \operatorname{Hom}(M, -).$

Exercise 7.2:

(5 points)

Let \mathcal{C} be an abelian category. Prove that the projective elements in \mathcal{C} are exactly the injective elements in the opposite category \mathcal{C}^{op} .

Exercise 7.1:

Let k be a field and V, W be k-vector spaces.

(a) Show that the definition of the kernel and cokernel of a linear map $f: V \to W$ is compatible with the definition of kernels and cokernels from the lecture.

(b) Prove that the category of k-vector spaces is an abelian category, i.e., show that

(i) every monomorphism is the kernel of a morphism.

(ii) every epimorphism is the cokernel of a morphism.

(5 points)

Keywords for the week 25.05.-31.05.: G-modules, group cohomology.

Exercise 6.3: (6 points) Let (A^*, d_A) , (B^*, d_B) be complexes. We define the complex $(A[1]^*, d_{A[1]})$ by setting $A[1]^n = A^{n+1}$ and $d^n_{A[1]} = -d^{n+1}_A$ for all $n \in \mathbb{Z}$. For a morphism $f^* : A^* \to B^*$ of complexes, the *cone* of f is given by the complex

$$\operatorname{cone}(f) = A[1] \oplus B : \quad \cdots \xrightarrow{d^{n-1}} A^{n+1} \oplus B^n \xrightarrow{d^n} A^{n+2} \oplus B^{n+1} \xrightarrow{d^{n+1}} \cdots,$$

where the differential d is defined by

$$d^{n}(a,b) = (-d_{A}(a), f^{n+1}(a) + d_{B}(b)), \quad (a,b) \in A^{n+1} \oplus B^{n}.$$

Prove that $f^*: A^* \to B^*$ is a quasi-isomorphism (i.e., the induced morphisms of f^* on the cohomology groups are isomorphisms), iff $\operatorname{cone}(f)$ is an exact complex.

Exercise 6.2:

(6 points) Let L|K be a finite Galois extension and G = Gal(L|K). Show that $H^1(G, L^{\times}) = 0$.

Exercise 6.1:

(6 points) Consider the space of homogeneous polynomials $\mathbb{Q}[X,Y]_k$ of weight $k \geq 0$ equipped with the $\operatorname{Gl}_2(\mathbb{Z})$ -action given by

$$\operatorname{Gl}_2(\mathbb{Z}) \times \mathbb{Q}[X,Y]_k \to \mathbb{Q}[X,Y]_k, \quad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, f(X,Y) \right) \mapsto f(aX + bY, cX + dY)$$

and let $G = \langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$. Write down the complex $C^*(G, \mathbb{Q}[X, Y]_k)$ and compute the cohomology groups $H^0(G, \mathbb{Q}[X, Y]_k)$ and $H^1(G, \mathbb{Q}[X, Y]_k)$.

Keywords for the week 18.05.-24.05.:Homology, cohomology, de Rham cohomology.

Exercise 5.3:

Let Γ be a finite, connected graph with vertices (e_1, \ldots, e_E) and edges (k_1, \ldots, k_K) . We endow the edges with an orientation and obtain the incidence matrix $I_{\Gamma} \in \operatorname{Mat}_{E \times K}(\mathbb{Z})$ of Γ in the following way:

$$(I_{\Gamma})_{ij} = \begin{cases} +1 & \text{if } k_j \text{ starts in } e_i \\ -1 & \text{if } k_j \text{ ends in } e_i \\ 0 & \text{else.} \end{cases}$$

Consider the complex C_* given by $C_0 = e_1 \mathbb{Z} \oplus \ldots \oplus e_E \mathbb{Z}$, $C_1 = k_1 \mathbb{Z} \oplus \ldots \oplus k_K \mathbb{Z}$ and $C_n = 0$ for all $n \geq 2$ endowed with the differential $d_1 : C_1 \to C_0$ given by multiplication with I_{Γ} and $d_n = 0$ for $n \neq 1$. Prove the following statements:

a) (C_*, d) is a complex.

b) The only nonzero homology modules are $H_0(C_*)$ and $H_1(C_*)$. We have $\operatorname{rk}(H_0(C_*)) = 1$ and $\operatorname{rk}(H_1(C_*)) = K - E + 1$.

c) The number of (simple) closed paths in Γ is K - E + 1.

Exercise 5.2:

(6 points)

(6 points)

Let $N \in \mathbb{N}$. An *(abstract) simplicial complex* K on $\{0, 1, ..., N\}$ is a collection of subsets of $\{0, 1, ..., N\}$, such that for every $\sigma \in K$ and $\tau \subseteq \sigma$, we have $\tau \in K$. For every $n \ge 0$, define the set of *n*-simplices as

$$K_n := \{ \sigma \in K \mid |\sigma| = n+1 \}.$$

Then any *n*-simplex $\sigma \in K_n$ can be uniquely expressed as $\sigma = \{x_0, x_1, ..., x_n\}$, where $0 \le x_0 < x_1 < \cdots < x_n \le N$. For every i = 0, ..., n, the face map is given by

$$\partial_i: K_n \to K_{n-1}, \{x_0, x_1, ..., x_n\} \mapsto \{x_0, ..., x_{i-1}, x_{i+1}, ..., x_n\}.$$

For a ring R set

$$C_n(K,R) := \bigoplus_{\sigma \in K_n} Re_{\sigma}, \quad n \ge 0,$$

i.e., $C_n(K, R)$ is the free R-module on K_n with basis elements labelled by e_{σ} , and define

$$d_n: C_n(K, R) \to C_{n-1}(K, R), \ e_\sigma \mapsto \sum_{i=0}^n (-1)^i e_{\partial_i \sigma}, \quad n \ge 1.$$

a) Verify that

$$\cdots \xrightarrow{d_{n+1}} C_n(K,R) \xrightarrow{d_n} C_{n-1}(K,R) \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} C_1(K,R) \xrightarrow{d_1} C_0(K,R) \to 0$$

is a complex. It is called the *simplicial chain complex*.

b) Determine the simplicial chain complex with coefficients in \mathbb{R} for the simplicial complex K on $\{0, 1, 2, 3\}$ given by all subsets of cardinality ≤ 2 .

Compute the homology groups $H^n(K, \mathbb{R}) = \ker(d_n) / \operatorname{im}(d_{n+1})$.

c*) For any (geometric) simplicial complex one can construct an abstract simplicial complex by only retaining the sets of vertices. Prove that, conversly, for any finite abstract simplicial complex K one can construct a (geometric) simplicial complex K'.

Exercise 5.1:

(6 points)

Let M, N be smooth manifolds.

a^{*}) Show that the dimension of the 0-th de Rham cohomology group $H^0_{dR}(M)$ equals the number of connected components of M.

b*) Let $f, g : M \to N$ be homotopic, smooth maps. Prove that the induced maps $\tilde{f}, \tilde{g}: \Omega^*(N) \to \Omega^*(M)$ of complexes (on $\Omega^p(N)$ they are given by the pullbacks f^*, g^*) are homotopic. In particular, we have $H^p_{dR}(f) = H^p_{dR}(g)$ for all $p \ge 0$.

c) Compute the de Rham cohomology groups for the *n*-dimensional sphere S^n . Hint: Use the result for S^1 from the lecture and induction.

d) Let $v, w \in \mathbb{R}^n$. Compute the de Rham cohomology groups for $\mathbb{R}^n \setminus \{v\}$ and $\mathbb{R}^n \setminus \{v, w\}$.

Keywords for the week 11.05.-17.05.: Five Lemma, Snake Lemma, complexes.

Exercise 4.5: (2 points)Let $0 \to V_1 \to V_2 \to \ldots \to V_n \to 0$ be an exact sequence of finite dimensional vector spaces. Show that $\sum (-1)^i \dim V_i = 0$.

Exercise 4.4:

(3 points)Let $\ldots \longrightarrow M_{r-1} \xrightarrow{\alpha_r} M_r \xrightarrow{\alpha_{r+1}} M_{r+1} \longrightarrow \ldots$ be an exact sequence of modules. Prove that the induced short sequences $0 \to L_r \to M_r \to L_{r+1} \to 0$ are exact, where $L_r = \operatorname{im} \alpha_r$.

Exercise 4.3:

Consider the following commutative diagram of R-modules

where all of the columns and the middle row are exact. Show that the first row is exact, iff the third row is exact.

Exercise 4.2:

Let R be a ring and $I, J \subseteq R$ be ideals.

(a) Prove that there is a short exact sequence of R-modules

$$0 \to I \cap J \to I \oplus J \to I + J \to 0.$$

(b) Use the Snake Lemma to deduce from part (a) an exact sequence

$$0 \to R/(I \cap J) \to R/I \oplus R/J \to R/(I+J) \to 0$$

(c) Show that the sequences of (a) and (b) are in general not split exact.

Exercise 4.1:

Let N be a submodule of a finitely generated R-module M.

(6 points)

(4 points)

(5 points)

(a) Show that N is not finitely generated in general.

(b) Prove that N is finitely generated if it is the kernel of a surjective R-module homomorphism $\Phi: M \to \mathbb{R}^n$ for some $n \in \mathbb{N}$.

Hint: Show and use that the sequence $0 \to N \to M \xrightarrow{\Phi} R^n \to 0$ is split exact.

Keywords for the week 04.05.-10.05.: projective modules, flat modules, injective modules.

Exercise 3.4:

a) Give an example for a short exact sequence

 $0 \to A \to B \to C \to 0$

of R-modules, which do not split.

b) Can you give an example as in part a), such that only A resp. B resp. C is free?

c) Is there an example as in part a), such that two resp. three of the modules A, B, C are free?

Exercise 3.3:

Prove or disprove the following statements:

a) Projective modules are flat.

- b) Flat modules are projective.
- c) Free modules are projective.
- d) Flat modules are free.
- e) Free modules are injective.

Exercise 3.2:

Show that for a R-module M the following conditions are equivalent:

i) For every exact sequence $0 \to N_1 \to N_2$ of *R*-modules and any module morphism $f: N_1 \to M$, there exists a morphism $g: N_2 \to M$, such that the following diagram commutes:

ii) Every short exact sequence $0 \to M \to N_1 \to N_2 \to 0$ of *R*-modules splits.

iii) For every short exact sequence $0 \to T' \to T \to T'' \to 0$ of *R*-modules, also the sequence

$$0 \to \operatorname{Hom}(T'', M) \to \operatorname{Hom}(T, M) \to \operatorname{Hom}(T', M) \to 0$$

is exact.

A module M satisfying those properties is called an injective module.

Exercise 3.1:

Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$. Further, let A_1 be the ideal generated by $1 + \sqrt{-5}$ and 2 in R and A_2 the ideal generated by 2.

Which of the *R*-modules A_1 , A_2 , A_1A_1 and A_1A_2 are projective resp. flat?

(6 points)

(6 points)

(6 points)

(6 points)

Keywords for the week 27.04.-03.05.: Tensor product, tensor algebra, localisation.

Exercise 2.5:

(2 points)Let R be a principal ideal domain and K its field of fractions, i.e., we have $K = S^{-1}R$ where $S = R \setminus \{0\}$. Show, if M is a finitely generated R-module, then we have $S^{-1}M \cong K^n$ where n is the rank of M/T(M).

Exercise 2.4:

a) Let A be an integral domain and $S \subset A$ a multiplicative subset. Show that the assignments

$$\mathfrak{q} \to \mathfrak{q}S^{-1}$$
 and $\mathfrak{Q} \to \mathfrak{Q} \cap A$

give a 1-1-correspondence between the prime ideals $\mathfrak{q} \subseteq A \setminus S$ of A and the prime ideals \mathfrak{O} of AS^{-1} .

b^{*}) Let A be an integral domain and \mathfrak{p} a prime ideal of A. Prove that the ring $S^{-1}A$, where $S = A \setminus \mathfrak{p}$, is a local ring.

Exercise 2.3:

Let V be a k-vector space of dimension n. Show that the tensor algebra T(V) is isomorphic to the free algebra $k\langle X \rangle$ over an alphabet $X = \{x_1, ..., x_n\}$ with n letters. Tip: See L. Foissy - Algebres de Hopf combinatoires.

Exercise 2.2:

 $(4 + 2 + 2^* \text{ points})$

 $(2 + 2^* \text{ points})$

(2 points)

Let $(*): 0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be a short exact sequence of A-modules. Prove the following statements:

a) For every A-module F, the sequence ("tensoring with $F \otimes_A -$ ")

$$F \otimes_A M' \xrightarrow{f} F \otimes_A M \xrightarrow{g} F \otimes_A M'' \longrightarrow 0$$

is also exact.

b) If (*) splits, then for every A-module F, the sequence

$$0 \longrightarrow F \otimes_A M' \xrightarrow{f} F \otimes_A M \xrightarrow{g} F \otimes_A M'' \longrightarrow 0$$

is also exact.

c^{*}). What changes, if we apply $-\otimes_A F$ to (*)?

Exercise 2.1:

(8 points)

Let $(*): 0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be a short exact sequence of A-modules. a) We say that (*) splits if one of the following equivalent conditions i)-iii) is satisfied: i) There is a morphism $\phi \in \text{Hom}_A(M'', M)$, such that $g \circ \phi = \text{id}$ ("g has a section").

ii) There is a morphism $\psi \in \operatorname{Hom}_A(M, M')$, such that $\psi \circ f = \operatorname{id}(f)$ has a retract"). iii) There is an isomorphism $h: M \to M' \oplus M''$, such that the following diagram commutes

where ι_1 is the canonical embedding and pr_2 is the canonical projection onto the second component.

Show that i) -iii) are equivalent.

b) Prove, if (*) splits, then there are isomorphisms $M \cong \operatorname{im} f \oplus \ker \psi$ and $M \cong \ker g \oplus \operatorname{im} \phi$.

Exercise 2.0 = old Exercise 1.3

(3 points)

Compute the following tensor products: a) $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$. b) $\mathbb{Z}/n\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Q}$.

c) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{R}$.

Keywords for the week 20.04.-26.04.: Rings, integral domain, units, modules, direct sum, direct product, free modules, rank, isomorphism theorems.

Exercise 1.6:

a) Let $f: A \to B$ be a ring morphism. Show that B is an A-module.

b) Show that any module is a \mathbb{Z} -module.

Exercise 1.5:

Prove or disprove the following statements

a) The direct product of rings $\prod_{i \in I} R_i$ is again a ring.

b) The direct sum of rings $\bigoplus_{i \in I} R_i$ is again a ring.

Exercise 1.4:

Prove the isomorphism theorems:

a) Let $f: M \to N$ be a *R*-module morphism. Then the is a canonical isomorphism $M/\ker f \cong \inf f$.

b) Let $N, N' \subset M$ be submodules. Then there exists a canonical isomorphism $(N + N')/N \cong N'/(N \cap N')$.

c) If $N' \subset N \subset M$ are submodules, then we have $(M/N')/(N/N') \cong M/N$.

d) Compute the above statements a)-c) for $N' = 6\mathbb{Z}$, $N = 3\mathbb{Z}$ and $M = \mathbb{Z}$.

Exercise 1.3:

(moved to next week)

(2 points)

(6 points)

(2 points)

(8 points)

Exercise 1.2*: (3 points) Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$. Further, let A_1 be the ideal generated by $1 + \sqrt{-5}$ and 2 in R and A_2 the ideal generated by 2.

Compute the *R*-modules $A_1 + A_2$, A_1A_1 and A_1A_2 . Which of these modules is free?

Exercise 1.1^* :

Let k be a field. Prove that a k[X]-module M is equivalent to a k-vector space V equipped with an endomorphism $\phi: V \to V$.

Tip: Multiplying by $\sum a_i x^i$ on M is equivalent to applying $\sum a_i \phi^i$ on V.