
Néron-Tate heights on algebraic curves
and subgroups of the modular group

by Ulf Kühn 1

Abstract. Combining Arakelov theory with Belyi’s theorem we derive that the values of the
Néron-Tate height pairing for divisors on algebraic curves defined over number fields are essen-
tially given by linear combinations of scattering constants associated to finite index subgroups of
the modular group PSL2(Z).
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0.1. Introduction. The main motivation to study the image of the Néron-Tate height
pairing of degree zero divisors on algebraic curves is that these real numbers are conjec-
turally related to special values of L-functions coming from arithmetic. The most important
result of this general picture is the theorem of Gross and Zagier which relates the Néron
Tate height of Heegner divisors to the derivative of the Hasse-Weil L-function of certain
elliptic curves [GZ]. In this article we relate Néron-Tate heights to scattering constants
associated to finite index subgroups of the full modular group. For simplicity, we describe
all results in the introduction for curves defined over Q.

Let Γ be a finite index subgroup of Γ(1) = SL2(Z)/{±1} and let h be the upper complex
half plane. We denote by X(Γ) = Γ \ h the general modular curve associated to Γ. For
each cusp Sj let bj denotes its width and let γj ∈ Γ(1) be such that γj(Sj) = ∞. Then the
scattering constants Cjk for Γ are the following real numbers

Cjk := lim
s→1

 π1/2

(bjbk)s

Γ(s− 1/2)

Γ(s)

∑
c>0

 ∗∑
d (mod bkc)

1

 1

c2s
− 3/(π · [Γ(1) : Γ])

s− 1

 ;

here the inner sum is taken over c, d such that there exist ( ∗ ∗c d ) ∈ γ−1
j Γγk. The union of

the set of scattering constants for Γ as Γ runs over all subgroups of finite index in Γ(1) is
a countable subset of R.

Let XQ be a geometrically irreducible curve defined over Q. Let β : XQ → P1
Q be a

Belyi morphism and let XQ(C) ∼= X(Γ) be the induced Belyi uniformization. A divisor
D on XQ is called cuspidal if its degree is zero and if the support of the induced divisor
D(C) on X(Γ) is contained in the cusps. The group generated by cuspidal divisors will be
denoted by Cusp(XQ, β). We note that given a finite set of points on XQ one can find a
Belyi morphism β such that the induced points on X(Γ) are cusps.
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Combining the Faltings-Hriljac theorem with the extension of Arakelov theory given in
[Kü], we obtain as special case of our main results:

Theorem. Let β : XQ → P1
Q be a Belyi morphism with induced Belyi uniformization

X(C) ∼= X(Γ). Let D1 =
∑

j njSj, D2 =
∑

k mkSk be cuspidal divisors.
(i) The Néron-Tate height pairing of D1 and D2 equals

〈D1, D2〉NT
=−

∑
p prime

δp log(p)− 2π
∑
j, k

njmkCjk,

here the coefficients δp are rational numbers.
(ii) If Cusp(XQ, β) generates a torsion subgroup in the Jacobian of XQ, then

Cjk =
12

deg(β)

(
12ζ ′Q(−1)− 1 + log(4π)

)
+
∑

p prime

ap,jk log(p),

here the coefficients ap,jk are rational numbers.
We remark that if a regular, semi-stable model of X(Γ) is known explicitly, then the ra-

tional numbers in question can be calculated explicitly. Moreover if Γ is a normal subgroup
of Γ(1), then for all primes p with p 6 | [Γ(1) : Γ] the coefficients ap,jk vanish.

Recall, if X(Γ) is the modular curve for a congruence subgroup Γ, then by the Manin-
Drinfeld Theorem some multiple of any cuspidal divisor is a principal divisor. We will show
below that the scattering constants for congruence subgroups are always of type as in (ii).
We also illustrate our results in the case of the modular curves X0(p), see Example 4.13.

If one of the cuspidal divisors D1 or D2 is torsion in Jac(XQ), then their Néron-Tate
height pairing vanishes. Thus (i) implies

exp

(
−2π

∑
j, k

njmkCjk

)
=
∏

p prime

pδp ,

here the exponents δp are rational numbers. Related to this observation is a theorem of
A. J. Scholl who has observed that these assumptions on D1 resp. D2 are equivalent to
the algebraicity of the positive Fourier coefficients of certain linear combinations of non-
holomorphic Eisenstein series [Sc]. We note that our result gives a necessary condition for
D1 or D2 to be torsion which involves the constant term of these Fourier expansion.

0.2. Leitfaden. In section one we recall the extension of Arakelov theory used in the
sequel. In section two we consider non-holomorphic Eisenstein series. We use them to
construct Green’s functions associated to the cusps. In section three we start recalling facts
on Belyi’s theorem and introduce models for modular curves. In section four we use the
Green’s functions of section two to obtain hermitian, logarithmically singular line bundles
associated to the cusps. Then we calculate the analytic contribution of the generalized
arithmetic intersection numbers for these hermitian line bundles, which is the main new
ingredient needed to prove our results. We finish with an example and suggestions for
further research.
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1 Review of Arakelov theory for arithmetic surfaces

1.1. Notation. In order to fix notation we recall some aspects of Arakelov Theory (see
e.g. [Kü], [So])

An arithmetic surface X is a regular scheme of dimension 2 together with a projective
flat morphism f : X → SpecOE, where OE is the ring of integers of E. Moreover we
assume that the generic fiber XE of f is a geometrically irreducible, i.e., X is a regular
model for XE over SpecOE.

We denote by X∞(C) the smooth projective manifold
∐

σ:E→CXσ(C).

1.2. Definitions. Let X be an arithmetic surface and X∞ as above; for a finite set S
of points S1, ..., Sr of X∞ denote by Y∞ the open complex manifold X∞ \ S. For Sj ∈ S
and ε > 0, denote by Bε(Sj) ⊆ X∞ the open disk of radius ε centered at Sj and Xε =
X∞ \ ∪Sj∈SBε(Sj); let t be a local parameter at Sj (j = 1, ..., r). For a line bundle L on
X , a singular metric h on the induced complex line bundle L∞ on X∞ is called hermitian,
logarithmically singular (with respect to S), if the following two conditions hold:

(a) h is a smooth, hermitian metric on L∞ restricted to Y∞;

(b) for each Sj ∈ S and any section l of L, there exist a real number α and a positive,
continuous function ϕ defined on Bε(Sj) and smooth away from the origin such that
the equality

‖l(t)‖ = − log(|t|2)α · |t|ordSj
(l) · ϕ(t)

holds for all t ∈ Bε(Sj) \ {0}; furthermore, there exist positive constants β and ρ
such that the inequalities∣∣∣∣∂ϕ(t)

∂t

∣∣∣∣ ≤ β

|t|1−ρ
,

∣∣∣∣∂ϕ(t)

∂t̄

∣∣∣∣ ≤ β

|t|1−ρ
,

∣∣∣∣∂2ϕ(t)

∂t ∂t̄

∣∣∣∣ ≤ β

|t|2−ρ

hold for all t ∈ Bε(Sj) \ {0}.
We call a line bundle L on X equipped with a logarithmically singular metric h a her-
mitian, logarithmically singular line bundle and denote it by L = (L, h). To indicate the
dependence of the quantities α (resp. ϕ, β, ρ) on l,L and Sj ∈ S, we write instead αL,j

(resp. ϕL,j, βL,j, ρL,j).

Two hermitian, logarithmically singular line bundles L,M on X are isomorphic, if

L ⊗M−1 ∼= (OX , | · |).
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The generalized arithmetic Picard group, denoted by P̂ic(X ,S), is the group of isomorphy
classes of hermitian, logarithmically singular line bundles L on X the group structure being
given by the tensor product. Note, if S = ∅, then P̂ ic(X , ∅) coincides with the classical

arithmetic Picard group P̂ ic(X ).

1.3. Definition. Let L,M be two hermitian, logarithmically singular line bundles on
X and l,m (resp.) be non-trivial, global sections, whose induced divisors on X∞ have no
points in common. Then, the generalized arithmetic intersection number L.M of L and
M is given by

L.M := (l.m)fin + 〈l.m〉∞; (1.3.1)

here (l.m)fin is defined by Serre’s Tor-formula, which for l,m having proper intersection
specializes to

(l.m)fin =
∑
x∈X

log ]
(
OX ,x

/
(lx, mx)

)
,

where lx, mx are the local equations of l, m respectively at the point x ∈ X and

〈l.m〉∞ =

− (log ‖m‖)
[
div(l)−

r∑
j=1

ordSj
(l) · Sj

]
+

r∑
j=1

ordSj
(l)
(
αM,j − log(ϕM,j(0))

)
−

lim
ε→0

(
r∑

j=1

ordSj
(l) · αM,j · log(− log ε2) +

∫
Xε

log ‖l‖ · c1(M)

)
. (1.3.2)

Note, in formula (1.3.2) the points Pi ∈ S with αi = 0 behave like the metric where smooth.
In [Kü] we proved:

1.4. Proposition. The formula (1.3.1) induces a bilinear, symmetric pairing

P̂ic(X ,S)× P̂ic(X ,S) −→ R

extending the pairing of Arakelov. �

1.5. Remark. We remark that the normalized generalised arithmetic intersection number
1/[E : Q] · L.M is invariant under extension of scalars from E to a finite extension of it.

1.6. Definition. We put P̂ ic(X ,S)Q = P̂ ic(X ,S)⊗Z Q. Let P̂ ic
0
(X ,S)Q ⊂ P̂ ic(X ,S)Q

denote the subgroup generated by the hermitian line bundles L = (L, ‖ · ‖) satisfying

deg(L|C(l)
p ) = 0 for all irreducible components C(l)

p of the fiber f−1(p) above p ∈ SpecOE,

and c1(L) = 0. Let P̂ ic
0
(X )Q be the corresponding subgroup of P̂ ic(X )Q considered in

classical Arakelov theory.

1.7. Proposition. We have an equality

P̂ ic
0
(X ,S)Q = P̂ ic

0
(X )Q. (1.7.1)
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Proof. Let (L, ‖ · ‖) ∈ P̂ ic
0
(X ,S)Q. Since c1(L) = 0 we note that by [Kü], proposition 3.3,

together with [Gr], formula (3.4), the hermitian metric ‖ · ‖ is in fact smooth on X∞. It

is unique up to multiplication by a scalar. Therefore, P̂ ic
0
(X ,S)Q does not depend on S

and hence coincides with P̂ ic
0
(X )Q.

1.8. Proposition. Let D be a divisor on XE with deg D = 0. Then there exist a divisor
D, which may have rational coefficients, on X satisfying DE = D and a hermitian metric
‖ · ‖ on O(D)∞ such that

O(D) = (O(D), ‖ · ‖) ∈ P̂ ic
0
(X )Q.

The divisor D is unique up to multiples of the fibers of f and the metric ‖ · ‖ is unique up
to multiplication by scalars.

Proof. For the existence of D we refer to lemme 6.14.1 in [MB1], the existence of ‖ · ‖
follows from formula (3.4) in [Gr].

1.9. Proposition. (Faltings-Hriljac) Let X → SpecOE be a semi-stable arithmetic sur-
face. Let D1, D2 be divisors on XE with deg D1 = deg D2 = 0. Then, for all extensions

O(D1),O(D2) of O(D1), O(D2) to P̂ ic
0
(X )Q, there is an equality

−〈D1, D2〉NT =
1

[E : Q]
· O(D1).O(D2), (1.9.1)

where 〈D1, D2〉NT is the Néron-Tate height pairing of the induced classes in the Picard group
of XE and O(D1).O(D2) denotes the generalized arithmetic intersection number (1.3.1).

Proof. By our definition of P̂ ic
0
(X )Q the statement follows immediately from the Faltings-

Hriljac formula (see [Fa], [MB1]).

2 On non-holomorphic Eisenstein series

2.1. Notation. Let h = {τ = x + iy | y > 0} be the upper half plane. Let Γ(1) =
SL2(Z)/{±1} be the modular group and let Γ ⊆ Γ(1) be a subgroup of finite index. The
open Riemann surface Y (Γ) = Γ \ h can be compactified by adding the finite set of cusps.
The resulting compact Riemann surface will be denoted by X(Γ) and called a general
modular curve. If Γ is a congruence subgroup, i.e., Γ(N) ⊆ Γ for some level N , then X(Γ)
will be called simply a modular curve.

Let S = {S1 = ∞, . . . , Sh} be a complete set of cusps for X(Γ). For each Sj ∈ S we let
Γj be its stabilizer in Γ. We fix also an element σj ∈ PSL2(R) such that σj(∞) = Sj and

σ−1
j Γjσj =

{(
1 m
0 1

) ∣∣m ∈ Z
}

.
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Let γj ∈ Γ(1) be such that γj(Sj) = ∞, then we may take σj = γj ·
(√

bj 0

0 1/
√

bj

)
, where bj

is the width of the cusp Sj. Let τ ∈ h, then a local parameter for the cusp Sj, considered
as a point on the compact Riemann surface X(Γ), is given by tj = exp(2πiσ−1

j (τ)); for a
more detailed description of the complex structure of X(Γ) we refer to [Kü].

2.2. Definition. For each cusp Sj there is a non-holomorphic Eisenstein series Ej(τ ; s),
which, for s ∈ C, Res > 1, is defined by the convergent series

Ej(τ ; s) =
∑

σ∈Γj\Γ

Im
(
σ−1

j σ(τ)
)s

.

2.3. Properties. Let us recall some facts on the theory of Eisenstein series the standard
reference is [Ku]. For all j = 1, . . . , h the function Ej(τ ; s) has a meromorphic continuation
to the s-plane, with a simple pole in s = 1 with residue 3/(π · [Γ(1) : Γ]). For all γ ∈ Γ
we have Ej(γ(τ); s) = Ej(τ ; s). It is an eigenfunction of the hyperbolic Laplacian with
eigenvalue s(s− 1), i.e.,

4Ej(τ ; s) = s(s− 1)Ej(τ ; s),

where 4 = y2 (∂2/∂x2 + ∂2/∂y2) is the hyperbolic Laplacian. The Fourier expansion of
Ej(τ ; s) at the cusp Sk is given by

Ej(σk(τ ; s)) =
∑
n∈Z

ajk,n(y; s) exp(2πinx),

where

ajk,0(y; s) = δj,k · ys + φjk,0(s)π
1/2 Γ(s− 1/2)

Γ(s)
· y1−s,

ajk,n(y; s) = φjk,n(s)Ks(2π|n|y) (n 6= 0);

here Γ(s) is the gamma function, Ks(t) the K-Bessel function of rapid decay and

φjk,n(s) =
1

(bjbk)s

∑
c>0

(
′∑

d mod bkc

exp(2πind/bkc)

)
1

c2s
,

here the sum is taken over c, d such that there exists ( ∗ ∗c d ) ∈ γ−1
j Γγk. Then the scattering

matrix

ΦΓ(s) =

(
πs Γ(s− 1/2)

Γ(s)
· φjk,0(s)

)
j,k

is symmetric. Note all the coefficients of the scattering matrix are Dirichlet series in a
general sense. They have a meromorphic continuation with a simple pole in s = 1 of
residue 3/(π · [Γ(1) : Γ]).
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2.4. Definition. For all pairs j, k we define the scattering constant Cjk to be the constant
term at 1 of the Dirichlet series (ΦΓ)jk(s), i.e.,

Cjk := lim
s→1

(
ΦΓ(s)j,k −

3/(π · [Γ(1) : Γ])

s− 1

)
. (2.4.1)

2.5. Remark. (i) Observe that not any real number can be a scattering constant associ-
ated with a finite index subgroup Γ of Γ(1). Indeed, the set of all such scattering constants
is countable. Because the number of cusps on X(Γ) is bounded by the index [Γ(1) : Γ] and
there is for large N the asymptotic #{Γ ⊆ Γ(1)| [Γ(1) : Γ] = N} ∼ τ2(N)τ3(N)/(N − 1)!,

where τm, m = 2, 3, is given by the generating series
∑∞

N=0
τm(N)

N !
xN = exp

(∑
d|m

xd

d

)
(see

[Ve], Appendix 2).
(ii) If Γ is a congruence subgroup of certain type, then the functions (ΦΓ)jk(s) are

determined by explicit formulas involving the the Riemann zeta function ζQ(s) and Dirichlet
L-series L(s, χ) for even characters (see e.g. [He], [Hu], or [Mo]). For these congruence
subgroups Γ (cf. Example 4.13) one can in principle calculate the scattering constants
explicitly. Our Theorem 4.8 below will in particular give a structural description for the
scattering constants for all congruence subgroups.

(iii) For arbitrary finite index subgroups Γ, at least to the knowledge of the author, no
such explicit formulas for the functions (ΦΓ)jk(s) or for the scattering constants are known.
In particular for subgroups, which are given by generators and relations, new methods are
needed to calculate the scattering constants.

2.6. Definition. Let Γ be a finite index subgroup of Γ(1). Let Sj be a cusp of X(Γ),
then we define the function gj(τ) by

gj(τ) := 4π lim
s→1

(
Ej(τ ; s)− (ΦΓ)j,j (s)

)
− 12

[Γ(1) : Γ]
log(4π),

and we denote by gj the function on X(Γ) induced by gj(τ).
We denote the normalized curvature form associated to the hyperbolic metric on h by

ω, i.e., ∫
X(Γ)

ω =

∫
Γ\h

dxdy

4πy2
=

[Γ(1) : Γ]

12
.

The following Proposition shows that gj is a Green’s function for the cusp Sj, which is
admissible to the hyperbolic metric.

2.7. Proposition. The function gj is invariant under complex conjugation and satisfies
the equality

ddcgj + δSj
=

12

[Γ(1) : Γ]
· ω.
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Proof. The Fourier expansion of Ej(τ ; s) implies that for τ ∈ h the Fourier expansion of
gj(τ) at Sj is given by

gj(σj(τ)) =4πy − 12

[Γ(1) : Γ]
log(4πy) +

∑
m6=0

ajj,m(y; 1) exp(2πimx).

At the cusp Sk it is given by

gj(σk(τ)) =
−12

[Γ(1) : Γ]
log(4πy) + 4π(Cjk − Cjj) +

∑
m6=0

ajj,m(y; 1) exp(2πimx).

Now, using the identity K1/2(x) =
√

π/(2x) exp(−x), we get that gj(τ) is a smooth function
on h which is invariant under the complex conjugation F∞. Furthermore, since Ej(τ) is an
eigenfunction of the hyperbolic Laplacian, we derive that for all τ ∈ h the equality

ddcgj(τ) =
1

4π

(
∂2

∂x2
+

∂2

∂y2

)
gj(τ) =

12

[Γ(1) : Γ]
· 1

4πy2

holds. At the cusps Sj and Sk we have in the corresponding local parameter

gj(tj) =− log |tj|2 −
12

[Γ(1) : Γ]
log(− log |tj|2) + fjj(tj), (2.7.1)

gj(tk) =− 12

[Γ(1) : Γ]
log(− log |tk|2) + fjk(tk), (2.7.2)

where fjj and fjk are continuous functions, smooth outside outside the elliptic fixed points.
They have the special values

fjj(0) = 0 (2.7.3)

fjk(0) = 4π (Cjk − Cjj) . (2.7.4)

The claim follows from the above description of gj in local coordinates.

For later use we state

2.8. Lemma. Let Bε(Sj) = {P ∈ X(Γ) | |tj(P )| < ε} be a small ε-neighborhood of Sj.
Then there is an equality

lim
ε→0

(
log(− log |ε|2)−

∫
X(Γ)\Bε(Sj)

gj ω
)

=
[Γ(1) : Γ]

12
· 4πCjj + 2 log(4π). (2.8.1)

Proof. Let us fix ε = exp(−2πT ), T >> 0 and set Xε = X(Γ) \ Bε(Sj). Let us choose a
fundamental domain FΓ for the action of Γ on h, then after possible conjugation with σj

a pre-image of Bε(Sj) is given by the set

Fσj ,ε = {x + iy ∈ h | y > T, 0 ≤ x < 1}.
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As Ej(s) is an eigenfunction of the hyperbolic Laplacian we get by means of Green’s formula∫
Xε

4πEj(s) ω =
1

s(s− 1)

∫
Xε

4Ej(s)
dxdy

y2
=

1

s(s− 1)

∫
∂Bε(Sj)

∂Ej(s)

∂η
dl

=
1

s(s− 1)

∫ 1

0

∂Ej(σ
−1
j (τ); s)

∂y
dx

∣∣∣∣∣
y=T

=
T s−1

s− 1
− (ΦΓ)j,j(s) ·

T−s

s

Then, using the Laurent expansion of (ΦΓ)j,j(s) we get∫
Xε

4πEj(s) ω =

(
1− 3

π[Γ(1) : Γ]
· 1

T

)
(s− 1)−1

+ log(T ) + O

(
log T

T

)
+ O(s− 1).

Furthermore, since we have ∫
Xε

ω =

(
[Γ(1) : Γ]

12
− 1

4πT

)
,

we easily determine∫
Xε

(
4π (Ej − (ΦΓ)j,j(s))−

12 log(4π)

[Γ(1) : Γ]

)
ω

=

((
1− 3

π[Γ(1) : Γ]
· 1

T

)
−
(

[Γ(1) : Γ]

12
− 1

4πT

)
· 12

[Γ(1) : Γ]

)
(s− 1)−1

− [Γ(1) : Γ]

12
· 4π · Cjj + log(T )− log(4π) + O

(
log T

T

)
+ O(s− 1).

Resorting the above terms and taking the limit s → 1 leads to

log(4πT )−
∫

Xε

gj ω =
[Γ(1) : Γ]

12
· 4π · Cjj + 2 log(4π) + O

(
log T

T

)
.

Now the claimed formula follows as 4πT = − log |ε|2.

2.9. Remark. Similar calculations maybe found in [Ku], page 19; compare also the special
case Γ = Γ(1) in [Za].

3 Review of Belyi’s theorem

Recall the following formulation of Belyi’s theorem [Se].

3.1. Theorem. Let X be a non-singular projective curve over C. The following are
equivalent.

9



(i) X is definable over Q, i.e., X arises by extensions of scalars from an algebraic curve
over an number field E with an fixed embedding E ↪→ C.

(ii) There is a finite covering β : X → P1 unramified outside {0, 1728,∞}.

(iii) There is a subgroup Γ of Γ(1) of finite index such that X ∼= X(Γ). �

We remind the reader of the main ideas in the proof of this famous theorem. The
passage from (i) to (ii) is given by a constructive algorithm due to Belyi. It associates to
a function f ∈ k∗(XE) a polynomial β(f) ∈ E[f ], so that the morphism β(f) : XE → P1

E

induced by the evaluation map has branch points 0, 1,∞.
The step from (ii) to (i) is a general fact about coverings (see e.g. [Kö]). Indeed, since

the branch points of β are rational points, β has to be the base change from a morphism
of algebraic curves β : XE → P1

E defined over a number field E to a morphism of the
associated compact Riemann surfaces.

The passage from (ii) to (iii) follows from the fact that the fundamental group of
P1 \ {0, 1,∞} is a subgroup of Γ(1). The passage from (iii) to (ii) is given by the j-
function since X(1) ∼= P1(C).

3.2. Definition. We call a morphism β : XE → P1
E with branch points 0, 1,∞ a Belyi

morphism and an isomorphism as in (iii) a Belyi uniformization. A point P ∈ β−1(∞) is
called a cusp. A divisor on XE of degree zero with support in the cusps is called a cuspidal
divisor. The group generated by cuspidal divisors will be denoted by Cusp(XE, β).

We note that a Belyi uniformization is by no means unique. Indeed, for a given finite
set D of algebraic points of XE there always exists a function f on XE defined over
E whose polar divisor contains D , but then by construction D ⊆ Cusp(XE, β(f)). So
in particular every divisor D on XE of degree zero is a cuspidal divisor for some Belyi
morphism (depending on D of course).

If a Belyi morphism β : XE → P1
E is given, then for each embedding σ : E → C we

obtain Belyi uniformizations Xσ(C) ∼= X(Γσ). Observe that [Γ(1) : Γσ] = deg(β) for all
embeddings σ. If XE is a modular curve, then all Γσ with Xσ(C) ∼= X(Γσ) are congruence
subgroups. This is because X(N)σ(C) ∼= X(Γ(N)) for all σ : Q(ζN) → C.

3.3. Definition. After possibly replacing E by a finite extension of E, we assume from
now on that all cusps of XE are E-rational points. We have X(1) ∼= P1(C) and the natural
model X (1) for X(1) is P1

Z where the embedding is given by the modular forms j ·∆ and
∆. By means of the morphism β : XE → P1

E we define XOE
to be the normalization of

X (1) ×Z OE in function field of X(Γ)E. Finally, if the genus of XE is different from zero
we let

f : X −→ SpecOE

be a semi-stable, regular model for XE (possibly replacing E by a finite extension of E),
otherwise X will be any regular model. We call X an arithmetic surface for XE.

3.4. Definition. We denote by Pβ the set of primes p of bad reduction of XOE
and let

bβ be the smallest positive integer with (bβ) ⊆ p for all primes p ∈ Pβ.

10



Recall that X is obtained by blowing up singularities of XOE
and blowing down (−1)

curves. Note this process does not increase the set of primes of bad reduction, but the
proper morphism induced by β

XOE [1/bβ] −→ X (1)OE [1/bβ],

does in general not extend to a proper morphism of schemes defined over SpecOE.

3.5. Definition. The cusps of XE are algebraic points and we denote by sj the Zariski
closure of the cusp Sj in the scheme X . We denote by PC the set of primes p for which
there exist two different cusps Sj and Sk such that

sj ∩ f−1(p) = sk ∩ f−1(p).

3.6. Remark. In general the sets PC and Pβ are unrelated. But if β : XE → P1
E is a

Galois covering, then PC ⊆ Pβ and p ∈ Pβ implies p| deg(β) (see e.g. [Co], Théorème 5).
Note that β : XE → P1

E is a Galois cover if and only if all the subgroups Γσ of Γ(1) given
by the Belyi uniformisation Xσ(C) ∼= X(Γσ) are normal subgroups.

4 Generalized arithmetic intersection numbers asso-

ciated to the cusps

4.1. Notation. Let XE be a geometrically irreducible, smooth, projective curve defined
over a number field E together with a Belyi morphism β : XE → P1

E. We let f : X →
SpecOE be its associated arithmetic surface. Let us denote by P̂ ic(X ,S) the group of
hermitian, logarithmically singular line bundles, having singularities at most at the cusps
on each X(Γσ) and at the elliptic points on eachX(Γσ).

4.2. Definition. Let Sj be a cusp of XE. Then we metrize the induced line bundle O(Sσ
j )

on X(Γσ) by defining the norm of the canonical section by ‖1Sσ
j
‖2

hyp = exp (−gσ
j ), where

gσ
j is as in Definition 1.2. As Sj corresponds to a E-rational point of XE, we can define a

metric on O(sj)∞ over X∞ by metrizing each component with the above metric. We put

O(sj) = (O(sj), ‖ · ‖hyp).

4.3. Proposition. The line bundle O(sj) is a hermitian, logarithmically singular line
bundle, i.e.,

O(sj) ∈ P̂ ic(X ,S).

Proof. Using the local descriptions (2.7.1), (2.7.2) for each gσ
j given in Proposition 2.7 we

derive that ‖ · ‖hyp is a hermitian, logarithmically singular metric in the sense of definition
1.2. Because the norm of the canonical section 1sj

is outside the set of cusps and the set

11



of elliptic points on each copy of X(Γ) a smooth function. It has at the cusp Sσ
k on X(Γσ)

the following expansion

‖1sj
‖(tk) = (− log |tk|2)

6
[Γ(1):Γ] · |tk|δjk · efσ

jk(tk)/2, (4.3.1)

here δjk is the Kronecker delta. Thus for all cusps we have α = 6
[Γ(1):Γσ ]

. At elliptic points
the norm is a continous function, thus we have α = 0 at these points.

4.4. Theorem. With notation above

1

[E : Q]
· O(sj).O(sk) =

∑
p∈Pβ∪PC

αp log N(p) +
2π

[E : Q]

∑
σ:E→C

(
Cσ

jk − Cσ
kk − Cσ

jj

)
+

6− 12 log(4π)

deg(β)
,

where all αp are rational numbers and the real numbers Cσ
jk are the scattering constants for

the groups Γσ.

Proof. We first assume j 6= k, then 1sj
and 1sk

are non-trivial, global sections of O(sj) and
O(sk) whose divisors on X∞ are disjoint. Therefore by Definition 1.2 we have

O(sj).O(sk) = (sj, sk)fin + 〈sj, sk〉∞;

here (sj, sk)fin = (1sj
, 1sk

)fin is the usual intersection number at the finite places and
〈sj, sk〉∞ = 〈1sj

, 1sk
〉∞ is the generalized arithmetic intersection number at the infinite

places.
As two different cusps meet at most in the fibers above p ∈ PC we obtain that there

exist some αp ∈ Q with

(sj, sk)fin = [E : Q] ·
∑

p∈PC

αp log N(p). (4.4.1)

Since all components of O(sj)∞ and O(sk)∞ are metrized in a similar way, we perform
the remaining calculations at the primes at the infinite places only in one of the [E : Q]
components of X∞. We calculate 〈sj, sk〉σ = 〈sj, sk〉∞|Xσ(C)

using − log ‖1sj
‖ = gj/2 and

− log ‖1sk
‖ = gk/2 with formula (1.3.2). In our case the first term of (1.3.2) vanishes, the

data to determine the second and third term can be read of the local expansion (4.3.1)
possibly after interchanging j and k with each other. The remaining integration is done in
Lemma 2.8. Therefore, we derive with the use of (2.7.4)

2 · 〈sj, sk〉σ = 1 ·
( 12

[Γ(1) : Γσ]
+ fσ

kj(0)
)
−

lim
ε→0

(
1 · 12

[Γ(1) : Γσ]
· log(− log ε2)−

∫
Xε

gσ
j ·

12

[Γ(1) : Γσ]
· ω
)

= 4π
(
Cσ

jk − Cσ
kk − Cσ

jj

)
+

12

[Γ(1) : Γσ]
− 24 log(4π)

[Γ(1) : Γσ]
. (4.4.2)
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Adding the two quantities (4.4.1) and (4.4.2) gives the formula

1

[E : Q]
· O(sj).O(sk) =

∑
p∈PC

αp log N(p) +
2π

[E : Q]

∑
σ:E→C

(
Cσ

jk − Cσ
kk − Cσ

jj

)
+

6− 12 log(4π)

deg(β)
. (4.4.3)

If j = k we have to move sk by the divisor div h of a rational function h in order to get
proper intersection on the generic fiber of X . For this procedure we will use the morphism
β : XOE [1/bβ] −→ X (1)OE [1/bβ]. Note by bilinearity of the generalized arithmetic intersection
number we may work with Q powers of line bundles and divisors with Q coefficients. Thus
we may proceed if there were a rational function h such that

h|XOE [1/bβ ]
= β∗(j)1/bk ,

where j is the j-function and bk is the width of the cusp Sk. Let div h = div h+ + div h−

be the decomposition of div h into its positive and negative part. Then by the projection
formula we have on XOE [1/bβ] that

(sk, div h+)fin,XOE [1/bβ ]
= (∞, 0)fin,P1

OE [1/bβ ]
= 0,

therefore only the primes p ∈ Pβ may give a contribution to the intersection number at
the finite places (sk, div h+)fin. As furthermore sk and sk + div h− intersect at most in the
fibers above p ∈ Pβ ∪ PC , there exist some αp ∈ Q with

(sk, sk + div h)fin = [E : Q] ·
∑

p∈Pβ∪PC

αp log N(p). (4.4.4)

Since each component of O(sk)∞ is metrized in a similar way, we perform the remaining
calculations only in one of the [E : Q] components of X∞. Recall the well-known Fourier
expansion of the j-function. Then we obtain by (4.3.1) for the local expansion of the
rational section 1sk

· h of O(sk) at the cusp Sσ
k the formula

− log ‖1sk
· hσ‖hyp =

−12

[Γ(1) : Γσ]
log(− log |tk|2) + fσ

kk(tk) + O(tk).

Using this modified data we proceed as we did for (4.4.2) and derive

2〈sk, sk + div h〉σ = 1 ·
( 12

[Γ(1) : Γσ]

)
−

lim
ε→0

(
1 · 12

[Γ(1) : Γσ]
· log(− log ε2)−

∫
Xε

gσ
k ·

12

[Γ(1) : Γσ]
· ω
)

= −4πCσ
kk +

12

[Γ(1) : Γσ]
− 24 log(4π)

[Γ(1) : Γσ]
. (4.4.5)
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Adding the above quantities (4.4.4) and (4.4.5) gives

1

[E : Q]
· O(sk).O(sk) =

∑
p∈Pβ∪PC

αp log N(p)− 2π

[E : Q]

∑
σ:E→C

Cσ
kk +

6− 12 log(4π)

deg(β)
.

(4.4.6)

Since j = k, we have Cσ
jj = Cσ

jk = Cσ
kk. Therefore we may write in the above formula the

quantity −Cσ
kk as Cσ

jk − Cσ
jj − Cσ

kk.

4.5. Remark. If Γ = Γ(1), then there is only one cusp S∞. We have by Kronecker’s limit
formula g∞ = − log ‖∆‖2

Pet and

−2πC∞,∞ = lim
s→1

(
ζ̂Q(2s− 1)

ζ̂Q(2s)
− 3/π

s− 1

)
= 12

(
12ζ ′Q(−1)− 1 + log(4π)

)
,

where ζ̂Q(s) = π−s/2Γ(s/2)ζQ(s) is the completed Riemann zeta function, see e.g. [Kü],
section 5. Furthermore since X (1) is smooth we obtain

O(s∞).O(s∞) = 122

(
1

2
ζQ(−1) + ζ ′Q(−1)

)
.

This formula was a major step in the proof of Theorem 6.1 of [Kü].

4.6. Proposition. Let D =
∑

j njSj be a cuspidal divisor. Then, there exist rational

numbers n
(l)
p , non-zero at most for p ∈ Pβ such that the class of

O(D) =
⊗
p∈Pβ

⊗
(l)

O
(
C(l)

p

)⊗n
(l)
p

⊗
j

O(sj)
⊗nj

(4.6.1)

in P̂ ic(X ,S)Q is an extension of O(D) to P̂ ic
0
(X )Q.

Proof. By Proposition 1.8 the divisor D extends to a divisor D with rational coeffi-
cients on X , which has zero degree on all irreducible components of the fibers of f .
In particular there exist rational numbers n

(l)
p , non-zero at most for p ∈ Pβ such that

O(D) =
⊗

p∈Pβ

(⊗
(l)O

(
C(l)

p

)⊗n
(l)
p

)⊗
j O(sj)

⊗nj . It remains to show that for the right

hand side of (4.6.1) the first Chern form vanishes, but since
∑

j nj = 0 this follows from
Proposition 2.7.

4.7. Remark. The fact that gD =
∑

j mjgj is a harmonic Green’s function for the
cuspidal divisor D =

∑
j mjSj, i.e. ddcgD + δD = 0, is also a key point in the article [Sc].

4.8. Theorem. Let XE be a geometrically irreducible curve defined over a number field
E. Let β : XE → P1

E be a Belyi morphism and let Xσ(C) ∼= X(Γσ) be the induced Belyi

14



uniformizations. Assume that Cusp(XE, β) generates a torsion subgroup in the Jacobian of
XE, then the scattering constants Cσ

jk for the groups for the groups Γσ satisfy the equality

1

[E : Q]

∑
σ:E→C

Cσ
jk =

12

deg(β)

(
12ζ ′Q(−1)− 1 + log(4π)

)
+
∑
Pβ

ap,jk log Np, (4.8.1)

where ap,jk are rational numbers.

Proof. Since the Neron Tate height pairing as well as the arithmetic intersection pairing
are non-degenerate pairings, we deduce as in Proposition 4.6 that for all cusps Sj there

exists rational numbers n
(l)
p (depending on Sj) and real numbers ρσ

j such that in P̂ ic(X ,S)Q

⊗
p∈Pβ

⊗
(l)

O
(
C(l)

p

)⊗n
(l)
p

⊗(
O(sj), ‖ · ‖hyp,ρσ

j

)⊗ deg(β)

= β∗O(s∞),

where ‖ · ‖hyp,ρσ
j

means that on Xσ(C) the metric is scaled by exp(−ρσ
j ). Thus for any

σ : E → C there is an algebraic modular form fσ for Γσ of weight 12 such that deg(β)(gσ
j +

ρσ
j ) = log ‖fσ‖2

Pet. The Fourier coefficients of fσ at each cusp Sk are algebraic numbers (not
necessarily algebraic integers!), i.e., fσ(tk) =

∑
n≥0 b(n, k)σtnk . Since div(fσ) does at most

contain fibers above p ∈ Pβ, we get that the coefficients b(1, j)σ and b(0, k)σ for k 6= j are
units in OE[1/bβ]. We deduce from the formulas (2.7.3) and (2.7.4) that ρσ

j = log |b(1, j)σ|2
and Cσ

jk − Cσ
jj = log |b(0, k)σ|2 − log |b(1, j)σ|2.

Let h be the modular function fσ/∆ for Γσ, then − log |h|2 = deg(β)(gσ
j + ρσ

j )−β∗g∞.
On X∞ the intersection of β∗(div(j) + s∞) and Sk is proper for all cusps Sk and the
class of the trivial bundle equipped with the trivial metric is in the kernel of the arithmetic
intersection pairing. We derive 0 = (div(h), β∗(div(j)+s∞))fin+〈div(h), β∗(div(j)+s∞)〉∞.
Calculations as in the proof of Theorem 4.4 show

1

[E : Q]
(div(h), β∗(div(j) + s∞))fin =

∑
p∈Pβ

αp log N(p)

and

1

[E : Q]
〈div(h), β∗(div(j) + s∞)〉∞ = 2π deg(β)

(
C∞∞ −

deg(β)

[E : Q]

∑
σ:E→C

Cσ
jj + ρσ

j

)
.

Using the fact that −2πC∞∞ = 12(12ζ ′Q(−1)− 1 + log(4π)) we derive the claim.

4.9. Remark. (i) Note that, given for all primes p the intersection matrix of the irreducible

components C(l)
p of the fibers f−1(p), then one can calculate the all the multiplicities ap in

Formula (4.8.1) explicitly.
(ii) Observe that, if the genus of XE is zero, then any cuspidal divisor is a principal,

thus we get non-trivial relations among the scattering constants.
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(iii) We note that, if XE is a modular curve, then by the Manin-Drinfeld theorem some
multiple of any cuspidal divisor is a principal divisor.

4.10. Theorem. Let XE be a geometrically irreducible curve defined over a number field
E. Let D1 =

∑
j njSj, D2 =

∑
k mkSk be two divisors on XE of degree 0. Choose a

Belyi morphism β : XE → P1
E such that D1 and D2 are cuspidal divisors on XE and let

Xσ(C) ∼= X(Γσ) be the induced Belyi uniformizations. Then we have the following formula
for the Néron-Tate height pairing 〈D1, D2〉NT of the classes of D1, D2 in Pic0(XE)

−〈D1, D2〉NT =
∑

p∈Pβ∪PC

δp log N(p) +
2π

[E : Q]

( ∑
σ:E→C

∑
j, k

njmkC
σ
jk

)
, (4.10.1)

where all δp are rational numbers and the real numbers Cσ
jk are the scattering constants for

the groups Γσ.

Proof. Let O(D1) and O(D2) be extensions of D1, D2 to P̂ ic
0
(X )Q provided by Proposition

4.3. Applying the Faltings-Hriljac Formula 1.9 we derive

−〈D1, D2〉NT =
1

[E : Q]
· O(D1).O(D2)

=
1

[E : Q]

⊗
p∈Pβ

⊗
(l)

O
(
C(l)

p

)⊗n
(l)
p

⊗
j

O(sj)
⊗nj

 .

⊗
p∈Pβ

⊗
(l)

O
(
C(l)

p

)⊗m
(l)
p

⊗
k

O(sj)
⊗mk


=
∑
p∈Pβ

βp log N(p) +
1

[E : Q]

(∑
j 6=k

njmkO(sj).O(sk)

)
.

For the last equality we used the bilinearity of the generalized arithmetic intersection
number. The generalized arithmetic intersection numbers involved in this formula are
determined in Theorem 4.4. Collecting all the terms and using the fact

∑
j nj =

∑
k mk = 0

we derive our main result.

4.11. Remark. (i) One should remark that 〈D1, D2〉NT does of course not depend on the
choice of the Belyi morphism β, but the individual terms in our formula may.

(ii) Note that, given for all primes p the intersection matrix of the irreducible compo-

nents C(l)
p of the fibers f−1(p) and the intersection multiplicities of the divisors sj with sk,

then one can calculate the all the multiplicities δp in Formula (4.10.1) explicitly.

4.12. Corollary. Let D1 =
∑

j mjSj, D2 =
∑

k nkSk be cuspidal divisors on XE and set

ρD1,D2 = exp

(
− 2π

[E : Q]

( ∑
σ:E→C

∑
j, k

mjnkC
σ
jk

))
.
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If some non-zero multiple of D1 or D2 is principal, then there exist rational numbers δp

such that
ρD1,D2 =

∏
p∈Pβ∪PC

N(p)δp .

Proof. If some non-zero multiple of D1 or D2 is a principal divisor then its Néron-Tate
height vanishes. The claim then follows by exponentiating equation (4.10.1).

4.13. Example. Let us illustrate in an example how one could recover the Manin-Drinfeld
theorem for certain modular curves. To ease notation we assume p is a prime such that
p ≡ 1 mod 12 and X0(p) is the modular curve associated to the congruence subgroup
Γ0(p) defined by

Γ0(p) :=

{(
a b
c d

)
∈ Γ(1)

∣∣∣∣ c ≡ 0 mod p

}
.

The curve X0(p) = X(Γ0(p)) is defined over Q. It has two cusps denoted by S∞ and
S0 of widths 1 and p respectively. Clearly C(Γ0(p)) is torsion, since div (∆(pτ)/∆(τ)) =
(p − 1)(S∞ − S0). Let us denote the cuspidal divisor S0 − S∞ by D. We now show
〈D, D〉NT = 0 by means of the methods developed in this article.

The semi-stable model f : X0(p) −→ Spec Z of X0(p) is defined over Z. The only prime
of bad reduction is the prime p, see e.g. [DeRa]. The fiber above p contains two irreducible

components C(∞)
p and C(0)

p . Both cusps determine disjoint sections s∞ and s0 of f . The
intersection matrix is given by

C(0)
p C(∞)

p s0 s∞

C(0)
p −p−1

12
p−1
12

1 0

C(∞)
p

p−1
12

−p−1
12

0 1

.

From this we get that the extension D = s0 − s∞ + 12/(p− 1) · C(0)
p of D is perpendicular

to all the irreducible components of the fibers of f . As in the proof of theorem 4.10 the
Néron-Tate height of D is therefore given by

−〈D, D〉NT = O(D).O(D)

=

(
12

p− 1

)2

· O(C(0)
p ).O(C(0)

p ) + 2
12

p− 1
· O(C(0)

p ).
(
O(s0)⊗O(s∞)−1

)
+O(s0).O(s0)− 2O(s0).O(s∞) +O(s∞).O(s∞)

=
12

p− 1
log p +O(s0).O(s0)− 2O(s0).O(s∞) +O(s∞).O(s∞).

Applying formula (4.4.3), we get since the cusp s0 and s∞ do never meet each other

O(s0).O(s∞) = −2π(C00 + C∞∞ − C0∞) +
6

p + 1
− 12 log(4π)

p + 1
.
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The natural morphism β : X0(p) → X(1) extends to the semi-stable model and the cusps
never meet div(β∗j)+, therefore formula (4.4.6) implies

O(s0).O(s0) = −2πC00 +
6

p + 1
− 12 log(4π)

p + 1

O(s∞).O(s∞) = −2πC∞∞ +
6

p + 1
− 12 log(4π)

p + 1
.

Recall, see e.g. [He] p. 536, that the scattering matrix for Γ0(p) is given by the equality

ΦΓ0(p)(s) =
1

p2s − 1

(
p− 1 ps − p1−s

ps − p1−s p− 1

)
· ζ̂Q(2s− 1)

ζ̂Q(2s)
,

where ζ̂Q(s) = π−s/2Γ(s/2)ζQ(s). We calculate (cf. Theorem 4.8)

−2πC00 = −2πC∞∞ =
12

p + 1

(
12ζ ′Q(−1)− 1 + log(4π)

)
+

12p2 log(p)

(p + 1)(p2 − 1)

−2πC0∞ = −2πC∞0 =
12

p + 1

(
12ζ ′Q(−1)− 1 + log(4π)

)
+

6(p2 − 2p− 1) log(p)

(p + 1)(p2 − 1)

With this description we obtain

−2π (2C∞0 − C∞∞ − C00) = − 12

p− 1
log p

and therefore 〈D, D〉NT = 0.

4.14. Remark. (i) The Fermat curves Fn : Xn + Y n = Zn have a Belyi uniformization
associated to non-congruence groups such that the group of cuspidal divisors is a torsion
subgroup in Pic0(Fn) (see e.g. [MR]). Hence by Theorem 4.8 we know the shape of the
scattering constants.

(ii) To determine a Belyi morphism for a curve together with a finite set of points
(say both given by equations) is a straightforward calculation, however to determine the
associated scattering constants seems to be a challenge.

References

[Co] J.-M. Couveignes: Quelques revêtements définis sur Q. Manuscripta Math.92,
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