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Abstract: In this talk we review the Minkowski spacetime which is the spacetime of
Special Relativity.
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1 Introduction

This work contains many things which are new and

interesting. Unfortunately, everything that is new is

not interesting, and everything which is interesting,

is not new.

L.D. Landau

Before we deal with the concepts of Minowski spacetime, let us warm up with some
basic definitions of classical mechanics.

If one wants to describe processes happening in nature, then the concept of reference
systems must be taken into account, by which we understand a system of coordinates serving
to indicate the space and time of a particle. Reference systems are called inertial, when in
which a freely moving particle continues to move with constant velocity vector when there
is no external forces act on it. In future reference, we also use quite often the concept of
events, an event is described by the place where is occurred and the time when is occurred.

In Special Relativity, one studies the structure of spacetime, which plays a role as the
non-dynamical background on which in the sense of high energy physics particles and fields
evolve.

Due to the Michelson-Morley experiment, light propagates with the maximal speed
c and the same in all inertial systems of frames. Correspondingly, we can consider the
following postulates: For any two inertial systems, they shall agree on

1. whether a given particle is moving with the speed of light.

2. the distance between events which are simultaneous in both systems.

We choose our conventions such that c = 1 and the Minkowski metric has the signature
(−1, 1, 1, 1).

The plan of this talk is first we introduce some basic mathematical definitions and
properties of the Minkowski spacetime, after that we will discuss some applications to
Special Relativity.
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2 Minkowski spacetime

Definition 2.1. A metric tensor g on a smooth manifold M is a symmetric nondegenerate
(0, 2) tensor field on M . A smooth manifold M equipped with a metric tensor g is called a
Riemannian manifold.

We use 〈, 〉 as an alternative notation for g, so that

g(v, w) = 〈v, w〉 , (2.1)

in which v, w denoted tangent vectors.

Definition 2.2. Minkowski spacetime denoted by (M, η) is the manifold R4 endowed with
the Minkowski (pseudo) inner product 〈, 〉. For a coordinate system (x0, x1, x2, x3), one
gets the components of the metric tensor g

gµν =

〈
∂

∂xµ
,
∂

∂xν

〉
:= ηµν , (2.2)

where µ, ν = 0, 1, 2, 3.

Theorem 2.3. If (x1, ..., xn) is a coordinate system in M at p, then its coordinate vectors
∂1|p, · · · ∂n|p form a basis for the tangent spaces Tp(M) and

v =
n∑
i=1

v(xi)∂i|p. (2.3)

In four-dimensional space, the coordinates of an event (ct, x, y, z) are the conponents
of a four dimensional radius vector denoted by (x0, x1, x2, x3). And a tangent vector in a
tangent space at an fixed event called origin can be expressed as

v =
∑
µ

vµ
∂

∂xµ
, (2.4)

For v, w two tangent vectors inM, their Minkowski inner product then takes the form

〈v, w〉 := −v0w0 + v1w1 + v2w2 + v3w3 =
∑
µ,ν

ηµνv
µwν . (2.5)

The coordinate basis {
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

}
(2.6)

is an orthonormal basis for this inner product. We have defined the Minkowski inner
product, so now we have to check if it is well defined, i.e. it has no dependence on the
choice of the inertial reference system.

On the inertial frame called S which was defined particularly as above, if one observes
a particle moving with the velocity of light, then its path shall be a straight line whose
tangent vector components must yield

(v0)2 = (v1)2 + (v2)2 + (v3)2, (2.7)
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so that the distance traveled equals the elapsed time. With the particular choice of coordi-
nates, v must satisfies

〈v, v〉 = 0. (2.8)

We consider an other inertial frame S′ associated with the coordinates (x′0, x′1, x′2, x′3).
Similar to (2.7), on this frame the vector

∂

∂x′0
± ∂

∂x′i
, (2.9)

is tangent to the motion of a particle moving with the velocity of light. Due to the first
postulate, given a particle moving with the velocity of light then any inertial frame must
agree with this velocity. Thus,〈

∂

∂x′0
± ∂

∂x′i
,
∂

∂x′0
± ∂

∂x′i

〉
= 0. (2.10)

which implies the following relations〈
∂

∂x′0
,
∂

∂x′0

〉
= −

〈
∂

∂x′i
,
∂

∂x′i

〉
, (2.11)〈

∂

∂x′0
,
∂

∂x′i

〉
= 0. (2.12)

Analogously, consider an another tangent vector of a straight line

√
2
∂

∂x′0
+

∂

∂x′i
+

∂

∂x′j
, i 6= j. (2.13)

We have the inner product〈√
2
∂

∂x′0
+

∂

∂x′i
+

∂

∂x′j
,
√

2
∂

∂x′0
+

∂

∂x′i
+

∂

∂x′j

〉
= 0. (2.14)

Substituting (2.11), we find 〈
∂

∂x′i
,
∂

∂x′j

〉
= 0. (2.15)

The inner product is defined to be non-degenerate, thus we deduce that there exists κ 6= 0

such that 〈
∂

∂x′µ
,
∂

∂x′ν

〉
= κηµν . (2.16)

Now we use the second postulate to show that κ = 1. In the inertial systems S and S′,
for x0 = const. and x′0 = const. the simultaneity hypersurfaces are 3-planes in R4. So
there are two cases to consider, on one hand, if they are parallel, then they will coincide for
the appropriate values of x0 and x′0, otherwise they intersect and result a 2-plane which
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contains simultaneity events of both frames. Let v 6= 0 be a vector relating two events in
the simultaneity planes. From dx0(v) = dx′0(v) = 0, we get

v =
3∑
i=1

vi
∂

∂xi
=

3∑
i=1

v′
i ∂

∂x′i
. (2.17)

The second postulate implies that

3∑
i=1

(vi)2 =
3∑
i=1

(v′
i
)2. (2.18)

In additions, we have

〈v, v〉 =
3∑
i=1

(vi)2 =
∑
i,j

〈
v′
i ∂

∂x′i
, v′

j ∂

∂x′j

〉
=
∑
i,j

〈
∂

∂x′i
,
∂

∂x′j

〉
v′
i
v′
j

= κ
3∑
i=1

(v′
i
)2. (2.19)

Ultimately, we find κ = 1, thus the new coordinate basis{
∂

∂x′0
,
∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

}
(2.20)

is indeed orthonormal, i.e. the Minkowski inner product is well defined.
Now let us study some basic properties of the Minkowski spacetime.
The length of a vector v ∈ R4 has the form

|v|=
√
|〈v, v〉 |. (2.21)

A vector v ∈ R4 is called:

1. timelike, if the inner product of v with itself is negative

〈v, v〉 < 0

2. spacellike, if the inner product of v with itself is positive

〈v, v〉 > 0

3. lightlike, if the inner product of v with itself vanishes

〈v, v〉 = 0,

We call the set of all vectors which yield the lightlike property, the light cone. Consider a
curve s : I ∈ R → R4, it is called timelike if 〈ṡ, ṡ〉 < 0. A timelike curve characterised by
the parameter t or a worldline inside the light cone relative to an event is nothing but the
path of a nonzero mass particle moving in Minkowski spacetime. Its tangent vector takes
the form

ds(t)

dt
=

(
1,

d~s

dt

)
= (1, ~v), (2.22)
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in which we use ~v = vi∂/∂xi to denote the velocity of the particle.
We then compute the inner product of the tangent vector with itself as follows〈

ds(t)

dt
,
ds(t)

dt

〉
= −c2 + ~v2. (2.23)

Since s(t) is timelike, thus we have v < c. In other words, c is the maximum possible
velocity.

Consider two inertial frames, one at rest and one moves relative to the other. Assume
that we are in the inertial reference system which is at rest, and observe clocks in the other
system. On one hand, in an infinitesimal time interval dt read in the rest frame, then the
other frame go a distance

√
d~s2, and on the other hand, in a system of the moving clocks

yields dx′ = dy′ = dz′ = 0. We know that ds2 is invariant of the choice of inertial frames,
thus we have

ds2 = −c2dt+ dx2 + dy2 + dz2 = −c2dτ2, (2.24)

from which

dτ =
1

c

ds

dt
dt = dt

(
1− d~s2

c2dt2

)1/2

= dt

(
1− ~v2

c2

)1/2

, (2.25)

in which τ is the time read in the inertial frame of the moving clocks and ~v is its velocity.
Integrating this expression, we obtain for c = 1

τ =

∫
dt|ṡ(t)|=

∫
dt
(
1− ~v2

)1/2
. (2.26)

This is the proper time of the moving object expressed in terms of the time for a system
from which the motion of the object is observed.

3 Lorentz transformations

In the last section, we have studied some basic definitions and properties of the Minkowski
spacetime. In this section, we attempt to investigate the Lorentz transformations relating
two inertial reference systems.

For simplicity, we consider the 2-dimensional Minkowski spacetime described by the
spacetime coordinates (t, x), and T ∈ SO0(1, 1) is a Lorentz change of basis to a new
inertial reference system with the coordinates (t′, x′), by which SO0(1, 1) is called the
proper Lorentz group in two dimensions. Let T act on the orthonormal basis (∂/∂t, ∂/∂x),
we obtain

∂

∂t′
= T

∂

∂t
= coshu

∂

∂t
+ sinhu

∂

∂x
, (3.1)

∂

∂x′
= T

∂

∂x
= sinhu

∂

∂t
+ coshu

∂

∂x
, (3.2)
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in which u ∈ R is called the rapidity or angle of rotation. The change of the basis can be
represented by the following matrix

S =

(
coshu sinhu

sinhu coshu

)
(3.3)

and its inverse matrix is obtained readily by changing u to −u

S−1 =

(
coshu − sinhu

− sinhu coshu

)
(3.4)

In more details, the relation between the old and the new coordinates is descibed by the
change of tangent vector elements under Lorentz transformations given by

t′ = t coshu− x sinhu, (3.5)

x′ = x coshu− t sinhu. (3.6)

These transformations express the information that with respect to an inertial reference
system chosen to be at rest, the moving frame then has velocity v = tanhu. One can
choose the inertial reference system called S′ at rest and use the inverse matrix S−1 to
express (t, x) in terms of t′, x′ and u. Furthermore, one shall note the following relations

coshu = (1− v2)−1/2, sinhu = v(1− v2)−1/2. (3.7)

Originally, we have for the Lorentz boost

S[v] =

(
(1− v2)−1/2 −v(1− v2)−1/2

−v(1− v2)−1/2 (1− v2)−1/2

)
, (3.8)

this matrix is dependent of v. So if one tries to compute the composition of S[v1], S[v2],
then one get

S[v1]S[v2] = S

[
v1 + v2
1 + v1v2

]
(3.9)

which is not what we expected since due to the Galileo group we have

G[v1]G[v2] = G[v1 + v2] (3.10)

Therefore we re-parameterize v appropriately in terms of the rapidity as in (3.7), in order
to get S[u1]S[u2] = S[u1 + u2]. Checking this relation is straightforward.
By substituting (3.7), then (3.5) and (3.6) can be re-expressed as

t′ = t(1− v2)−1/2 − x(1− v2)−1/2v, (3.11)

x′ = x(1− v2)−1/2 − t(1− v2)−1/2v. (3.12)

Obviously, if we consider the non-relativistic regime, by taking c → ∞, then we run back
to the very well known case, the Galileo transformations

t′ = t, x′ = x− vt. (3.13)
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We can say that the Galileo group is a subgroup of the Lorentz group.
In the last chapter, we have used one approach to derived the proper time. With the

Lorentz transformations, we now seek to deal with concepts of proper length, proper volume
and again the proper time.

Consider an inertial frame S at rest, in this frame a length of a rod is measured to
be ∆x = x2 − x1 where x1, x2 are positions indicated by two ends of the rod. We now
determine what happens if we measure the length of this rod in the S′ system moving along
the x-axis with velocity v. According to (3.12), we have

x1 =
x′1 + vt′√

1− v2
, x2 =

x′2 + vt′√
1− v2

, (3.14)

from which

∆x = x2 − x1 =
∆x′√
1− v2

. (3.15)

Let us denote the proper time (the length of a rod measured in the rest system) by l0 = ∆x,
and its length measured in any other reference system S′ by l, then we can rewrite (3.11)

as

l = l0
√

1− v2 =
l0

coshu
< l0. (3.16)

This result implies that a maximum possible length of a rod can be achieved if it is measured
in a reference system which is at rest. This effect is called the Lorentz contraction. Very
similar, the volume V of a body decreases in terms of the proper volume V0 as follows

V = V0

√
1− v2. (3.17)

Lastly, from (3.12) we have

t1 =
t′1 + vx′√

1− v2
, t2 =

t′2 + vx′√
1− v2

(3.18)

subtracting t1 from t2,

τ = ∆t′ = ∆t
√

1− v2. (3.19)

This result implies that the moving clocks run slower than the ones at rest. This effect is
called the time dilatation.

Appendices
Lorentz group

The Lorentz transformations form a group defined by the group of linear insometries of
Minkowski space (M4, ηµν)

L = {Λ ∈M(4,R)|〈Λx,Λy〉 = 〈x, y〉}
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that requires the following constraint on Λ

ΛtηΛ = η, or
∑
µ,ν

ηµνΛµρΛνσ = ηρσ. (.20)

In fact, by taking the determinant of (3.1), we end up with the two values of det(Λ) = ±1,
and (3.1) also implies Λ0

0 ≥ 1 or Λ0
0 ≤ −1, therefore L is a 6-dimensional non-compact Lie

group O(1, 3) which consists of four connected components. For example, one component
can be restricted by taking det Λ = 1 and Λ0

0 ≥ 1 which is denoted by SO(1, 3)↑. The
proper Lorentz group SO0(1, 3) is the group of linear maps which preserve orientation.
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