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Abstract: The purpose of this talk is to to study globally hyperbolic manifolds and give
a rigorous proof of the Penrose singularity theorem which is one of the most important
singularity theorems in differential geometry and general relativity.
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1 Globally hyperbolic spacetime

In this section we are going to study globally hyperbolic spacetime, derive a certain expres-
sion of the metric for this kind of manifold and calculate the expansion of a 2-dimensional
surface along null geodesics which is going to play a crucial role in the proof of the Penrose
singularity theorem.

Definition 1.1. A spacetime (M, g) is said to be stably causal if there exists a smooth
function, t : M → R such that gradt is timelike.

Definition 1.2. A stably causal spacetime possessing a time function whose level sets are
Cauchy hypersurfaces is said to be globally hyperbolic.

Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hypersurface with future-
pointing unit normal vector field n, and Σ ⊂ S a compact 2-dimensional submanifold with
unit normal vector field ν in S. Let cp be the null geodesic with initial condition np + νp
for each point p ∈ Σ. We can define the smooth map exp : (−ε, ε)×Σ→M for some ε > 0,
as exp(r, p) := cp(r).

Definition 1.3. The critical values of exp are said to be conjugate points of Σ. Conjugate
points are points where geodesics starting orthognally at nearby points of Σ almost intersect.

Let q = exp(r0, p) be a point not conjugate to Σ. If φ is a local parametrization of Σ

around p, then we can construct a system of local coordinates (u, r, x2, x3) on some open
set U 3 q by using the map.

(u, r, x2, x3) 7−→ exp(r, ψu(φ(x2, x3)) (1.1)

where ψu is the flow along the timelike geodesics orthogonal to S and the map
exp : (−ε, ε)×ψu(Σ)→M is defined as the one before. Since ∂

∂r is tangent to null geodesics,
grr = 〈 ∂∂r ,

∂
∂r 〉 = 0. On the other hand we have
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∂

∂xµ
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∂

∂xµ
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∂r
,∇ ∂
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∂

∂r
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2

∂

∂xµ
〈 ∂
∂r
,
∂

∂r
〉 = 0 (1.2)

Moreover, since gru = −1 and gr2 = gr3 = 0 on ψu(Σ), we have gru = −1 and
gr2 = gr3 = 0 on U . Therefore the metric can be written in this coordinate system as
follows

g = αdu⊗ du− du⊗ dr − dr ⊗ du+
3∑
i=2

βi(du⊗ dxi + dxi ⊗ du) +
3∑

i,j=2

γijdx
i ⊗ dxj

(1.3)

The determinant of the metric g is

det(g) = det


α -1 β2 β3

-1 0 0 0
β2 0 γ22 γ23

β3 0 γ32 γ33

 = −det

(
γ22 γ23

γ32 γ33

)
(1.4)

But since det(g) < 0 the functions γij := 〈 ∂
∂xi
, ∂
∂xj
〉 form a positive definite matrix and

thus g induces a Riemannian metric on the 2-dimensional surfaces exp(r, ψu(Σ)), which are
spacelike.

Now we want to calculate the Ricci tensor for this globally hyperbolic spacetime, so
first we calculate the Christoffel symbols for this metric.

Γuur = Γurr = Γuri = Γrrr = Γirr = 0

Γirj =
3∑

k=2

γikβkj
(1.5)

where βij = 1
2
∂γij
∂r Consequently,

Rrr = Ruurr +

3∑
i=2

Riirr =

3∑
i=2

(−∂Γiir
∂r
−

3∑
j=2

ΓjirΓ
i
rj) = − ∂

∂r
(

3∑
i,j=2

γijβij)−
3∑

i,j,k,l=2

γjkγilβkiβlj

(1.6)

The quantity

θ :=
3∑

i,j=2

γijβij (1.7)
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is called the expansion of the null geodesics, and has an important geometric meaning

θ =
1

2
tr((γij)

−1 ∂

∂r
(γij)) =

1

2

∂

∂r
log γ =

∂

∂r
log γ

1
2 (1.8)

where γ := det(γij). Thus the expansion yelds the variation of the area element of the
2-dimensional surfaces exp(r, ψu(Σ)), and more importantly the singularity of the expansion
indicates a zero of γ which means that there is a conjugate point to ψu(Σ).

2 Null energy condition

In this section we are going to introduce the null energy condition and prove one very
important consequence of this condition.

Definition 2.1. A spacetime (M, g) is said to satisfy the null energy condition if the Ricci
tensor satisfies the condition Ric(V, V ) ≥ 0 for any null vector field V .

Proposition 2.2. Let (M, g) be a globally hyperbolic spacetime satisfying the null energy
condition, S ⊂ M a Cauchy hypersurface, Σ ⊂ S a compact 2-dimensional submanifold
with a unit normal vector field ν in S and p ∈ S a point where θ = θ0 < 0 . Then the null
geodesic cp contains at least a point conjugate to Σ, at an affine parameter distance of at
most − 2

θ0
to the future of Σ.

Proof. Since (M, g) satisfies the null energy condition and we have already calculated
one of the components of the Ricci tensor, we have

Ric(
∂

∂r
,
∂

∂r
) ≥ 0 =⇒ Rrr ≥ 0 =⇒ ∂θ

∂r
+

3∑
i,j,k,l=2

γjkγilβkiβlj ≤ 0 (2.1)

we choose an orthonormal basis, such that γij = δij , and using the inequality for n×n
matrices

(trA)2 ≤ n tr(AtA) (2.2)

we get the followig result

3∑
i,j,k,l=2

γjkγilβkiβlj =
3∑

i,j=2

βjiβij = tr(βtβ) ≥ 1

2
θ2 (2.3)

So consequently θ has to satisfy

∂θ

∂r
+

1

2
θ2 ≤ 0 (2.4)
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Integrating we get

1

θ
≥ 1

θ0
+
r

2
(2.5)

but for r = − 2
θ0

1

θ
≥ 0 =⇒ θ −→∞ (2.6)

So since the expansion blows up at a point this means that the area element γ becomes
zero and consequently the null geodesic cp contains a least a conjugate point to Σ.

�

3 Chronological and causal future

In this section we are going to study some properties of chronological and causal future, so
first we give the definition of these notions.

Definition 3.1. A point p chronologically precedes q, also denoted as p� q, if there exists
a future-directed chronological (timelike) curve from p to q. The chronological future of a
point p ∈ M is the set I+(p) of all points to which p can be connected by a future directed
timelike curve, I+(p) := {q ∈M |p� q}.

Definition 3.2. A point p causally precedes q, also denoted as p < q, if there exists a future-
directed causal (non-spacelike) curve from p to q. The causal future of a point p ∈M is the
set J+(p) of all points to which p can be connected by a future directed causal(non-spacelike)
curve, J+(p) := {q ∈M |p < q} .

Definition 3.3. We define the chronological future of a compact surface Σ as the union of
the chronological future at each point of the surface, I+(Σ) :=

⋃
p∈Σ

I+(p).

Definition 3.4. We define the causal future of a compact surface Σ as the union of the
causal future at each point of the surface, J+(Σ) :=

⋃
p∈Σ

J+(p).

Remark 3.5. It is obvious that I+(Σ) is an open set, as a union of open sets, but J+(Σ) is
closed. This is something we saw also in the talk a about the Hawking singularity theorem.

Now we give the next corollary without a proof, since it was proven in the talk about
Causality.

Corollary 3.6. Let (M, g) be a time-oriented spacetime and p ∈ M . If q ∈ J+(p)\I+(p)

then any future-directed causal curve connecting p to q must be a reparameterized null
geodesic.
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Now we want to prove that even a future-directed null geodesic orthogonal to Σ may
eventually enter in the chronological future of Σ, I+(Σ). A sufficient condition for this to
happen is given by the next proposition.

Proposition 3.7. Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hypersurface
with future-pointing unit normal vector field n, Σ ⊂ S a compact 2-dimensional submanifold
with unit normal vector field ν in S, p ∈ Σ, cp the null geodesic through p with initial
condition np + νp and q = cp(r) for some r > 0. If cp has a conjugate point between p and
q then q ∈ I+(Σ).

Proof. Let s be the first conjugate point along cp between p and q, there exists another
null geodesic γ starting at Σ which (approxiamtely) intersects cp at s. The piecewise smooth
null curve obtained by following γ between Σ and s, and cp between s and q is causal curve
but not a null geodesic. This curve can be easily smoothed while remaining causal and
non-geodesic, and by Corollary 3.6 we have q ∈ I+(Σ).

�

4 Penrose Singularity Theorem

In this section we are going to prove the Penrose singularity theorem, but first we give the
definition of a singular manifold and a trapped surface.

Definition 4.1. A spacetime (M, g) is said to be singular if it is not geodesically complete.

Definition 4.2. Let (M, g) be a globally hyperbolic spacetime and S a Cauchy hypersurface
with future-pointing unit normal vector field n. A compact 2-dimensional submanifold Σ ⊂ S
with unit normal vector field ν in S is said to be trapped if the expansions θ+ and θ− of
the null geodesics with initial conditions n + ν and n − ν, respectively are both negative
everywhere on Σ.

So now we have defined and proved everything we needed in order to prove the Penrose
singularity theorem.

Theorem 4.3 (Penrose Singularity Theorem). Let (M, g) be a connected globally hyperbolic
spacetime with a non-compact Cauchy hypersurface S, satisfying the null energy condition.
If S contains a trapped surface Σ then (M, g) is singular.

Proof. Let t : M −→ R be a global time function such that S = t−1(0). The integral
curves of gradt, being timelike, intersect S exactly once, and ∂I+(Σ) at most once. This
defines a continuous injective map π : ∂I+(Σ) −→ S, whose image is open. Indeed, if
q = π(p), then all points in some neighborhood of q are images of points in ∂I+(Σ), as
otherwise there would be a sequence qn −→ q such that the integral curves of gradt through
qn would not intersect ∂I+(Σ). If rn are the intersections of these curves with the Cauchy
hypersurface t−1(t(r)), for some point r to the future of p along the integral line of gradt,
we would have rn −→ r, and so rn ∈ I+(Σ) for sufficiently large n (as I+(Σ) is open),
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leading to a contradiction. Since Σ is trapped, there exists θ < 0 such that the expansions
θ+ and θ− of the null geodesics orthogonal to Σ both satisfy θ+, θ− ≤ 0. We will show that
there exists a future-directed null geodesic orthogonal to Σ which cannot be extended to
an affine parameter greater than r0 = − 2

θ0
to the future of Σ.

Suppose that this does not hold. Then, according to Proposition 2.2, any null geodesic
orthogonal to Σ would have a conjugate point at an affine parameter distance of at most
r0 to the future of Σ, after which it would be in I+(Σ), by Proposition 3.7. Consequently,
∂I+(Σ) would be a (closed) subset of the compact set

exp+([0, r0]× Σ) ∪ exp−([0, r0]× Σ) (4.1)

where exp+ and exp− refer to the exponential map constructed using the unit normals
ν and −ν, and therefore ∂I+(Σ) would be compact itself. So since, ∂I+(Σ) is compact its
image under π would also be compact, hence closed as well as open. SinceM is connected, S
would be connected as well, the image of π woulde be S, which then would be homeomorphic
to ∂I+(Σ) which is compact, but by hypothesis S is non-compact and we have reached a
contradiction.

�

Remark 4.4. It should be clear that (M, g) is singular if the condition of existence of
a trapped surface is replaced by the condition of existence of an anti-trapped surface. A
compact surface Σ is anti-trapped if the expansions of null geodesics orthogonal to Σ are
both positive.

Now we would like to conclude the discussion of Penrose singularity theorem by giving
some examples of manifods which contain trapped surfaces and some which do not contain
trapped surfaces.

Example 4.5 (The Schwarzschild solution).

The region r < 2m of the Schwarzschild solution is globally hyperbolic, as we saw in
the talk about the Schwarzschild solution, and also satisfies the null energy condition since
Ric = 0. Moreover r (or −r) is clearly a time function (depending on the time orientation),
it must increase (or decrease) along any future-pointing null geodesic, and therefore any
sphere of constant (t, r) is anti-trapped (or trapped). Since any Cauchy hypersurface is
diffeomorphic to R×S2, hence non-compact, by Theorem 4.3 the Schwarzschild solution is
singular.

Example 4.6 (The FLRW models).

The FLRW models, as we saw in previous talk, are globally hyperbolic and satisfy the
null energy condition (as ρ > 0). Moreover, the radial null geodesics satisfy
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dr

dt
= ±1

a

√
1− kr2 (4.2)

Therefore, if we start with a sphere Σ of constant (t, r) and follow the orthogonal null
geodesics along the direction of increasing or decreasing r we obtain spheres whose radii ar
satisfy

d(ar)

dt
= ȧr + aṙ = ȧr ±

√
1− kr2 (4.3)

Assume that the model is expanding, with the big bang att = 0, and spatially non-
compact. Then, for sufficiently small t > 0, the sphere Σ is anti-trapped, and hence by
Theorem 4.3 we get that this model is singular to the past of Σ.

Example 4.7 (Minkowski space).

Minkowski space is a flat spacetime which does not contain any trapped surfaces, its
metric is given by the expression

η = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz (4.4)

The fact that Minkowski spacetime does not contain any trapped surfaces, makes
Minkowski space non-singular.
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