6. Übung zur Algebraischen Graphentheorie

Aufgaben zum 11.7.2008.

- 1. Sei Γ der PETERSEN-Graph.
 - (i) Bestimmen Sie Aut(Γ).
 - (ii) Bestimmen Sie ein n so, daß $\Gamma[\overline{K_n}]$ ein CAYLEY-Graph ist.

Hinweis. Eine Untergruppe von ${\rm Aut}(\Gamma)$ wurde in Abschnitt 3.1 vorgestellt. Für den zweiten Teil studiere man den Beweis des Satzes von Sabidussi.

- 2. Sei Γ ein Graph und $|V(\Gamma)|$ oder $\kappa(\Gamma)$ Primzahl. Zeigen Sie $\delta(\Gamma)=\kappa(\Gamma)$.
- 3. (+) Sei Γ ein zusammenhängender eckentransitiver Graph. Zeigen Sie, daß die Kantenzusammenhangszahl $\lambda(\Gamma) := \min\{|S| \colon S \subseteq E(\Gamma), S \text{ trennt } \Gamma\}$ gleich dem Minimalgrad $\delta(\Gamma)$ von Γ ist.

Hinweis. Für zwei Mengen $X,Y\subseteq V(\Gamma)$ mit $|E_\Gamma(X)|=|E_\Gamma(Y)|=\lambda(\Gamma)$ und $X\cap Y\neq\emptyset$, $X\cup Y\neq V(\Gamma)$ gilt $|E_\Gamma(X\cap Y)|=\lambda(\Gamma)$ (bekanntlich; sonst nachrechnen). Betrachten Sie ein kleinstes $X\subseteq V(G)$ mit $|E_\Gamma(X)|=\lambda(\Gamma)$ und zeigen Sie, daß der Stabilisator $(\operatorname{Aut}(\Gamma))_X=\{\alpha\in\operatorname{Aut}(\Gamma):\alpha(X)=X\}$ von X in $\operatorname{Aut}(\Gamma)$ transitiv auf X operiert. Was folgt daraus für $|E_\Gamma(X)|$?

 $Matthias\ Kriesell\cdot 7 ter\ Juli\ 2008$