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Queues as a mathematical model

Queueing system

attendance of employee
has a break / is present

finite buffer
packets in buffer

maintenance status
maintained / ready to use

abstract process
countable state space

Environment

Figure: Queueing system examples.
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Stochastic model

countable system states E = N0×K

N0 queue states (number of customers)
K environment state space

time t ∈ [0,∞]

stochastic process (X (t),Y (t)) ∈ E

X (t) number of customers at time t
Y (t) environment state at time t

exponential sojourn times
transition rates
Find: limiting distribution (long term behavior)
π(n,k) := limt→∞P ((X (t),Y (t)) = (n,k))
Ansatz: solve πQ = 0 with generator matrix Q containing the
transition rates.
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Problem settings & challenges

Given: states (n,k) ∈ E and transition rates Q(n,k),(i ,m) ∈ R+
0

Find: π(n,k) := limt→∞P ((X (t),Y (t)) = (n,k))
Solve: πQ = 0, ||π||1 = 1

Challenge
Problem: matrix Q is large.

For a queue with 99 places and 4 environment states we have
Q ∈ R400×400.
For a queue with ∞ capacity we have Q ∈ R∞×∞. This system can be
easier to solve than one with finite capacity!
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Toy problem

Queue at a soft drink vending machine
Service time is random. Includes: feeding the machine with coins, fetching
the can, and so on.
Service according to FCFS policy.
Capacity of the machine is limited (maximal three cans).
As soon as the machine has only 1 can, replenishment is ordered.
Customer behavior when machine is empty:

Customers that were already in the queue, are waiting until
replenishment will be finished.
New customers go somewhere else =̂ are lost.

Find:
Limiting distribution of customers and cans in the vending machine.
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Mathematical model

States (n,k): n people in queue, k cans in vending machine. That is
E = N0×{0,1,2,3}.

Figure: State (people, cans) = (n,k) = (4,2)

Stochastic process (X (t),Y (t) : t ∈ [0,∞)), where X (t) describes the
queue and Y (t) describes the environment.
Customer arrival stream is Poisson with rate λ .
Service time is exponential with rate µ .
Replenishment lead time is exponential with rate ν .
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Construction of Q

µ

ν

λ

Figure: Possible system changes from (people, cans)= (X (t),Y (t)) = (2,1)



. . . (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) . . .

.

.

.
(2,0)
(2,1) µ ν λ

(2,2)
(2,3)

.

.

.



Krenzler, Daduna (Uni HH) Queues in rnd. environment GPSD 2014 7 / 19



Q-structure

Structure of the Q matrices for M/M/1/∞-queues
with environment states K :

Q =



B0 B1
A−1 A0 A1

A−1 A0 A1
A−1 A0 A1

. . . . . . . . .


,

Bi ,Ai ∈ RK×K .
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Solution of πQ = 0

Figure: (n,k) = (2,1)

λ - arrival rate
µ - service rate
ν - replenishment rate

For the limiting distribution π(n,k) := limn→∞P (X (t) = n,Y (t) = k) it
holds

Product form!

π(n,k) = ξ (n)θ(k)

with ξ (n) =
(
1− λ

µ

)(
λ

µ

)n
and θ = C−1

θ

(
λ

ν
,1,(λ+ν

λ
),(λ+ν

λ
)
)
.

Can we keep these properties of π in more general settings?
YES, WE CAN!
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Loss system

Vending machine M/M/1/∞-loss system

arrival Poisson(λ )

service, FCFS Exp(µ) ′′Exp(µ(n))′′, X (t) = n
environment

states K = {0,1,2,3} K - countable

env. states with
no service and

new customer loss
{0} (empty machine) KB ⊂ K

env. changes
after service n ≥ 1

(n,k)→ (n−1,k−1)
= µ , k ≥ 1

(n,k)→ (n−1,m)
= µRkm, with stochastic

matrix R

env. changes
independent from

queue

(n,1)→ (n,3) = ν

(n,0)→ (n,3) = ν

(replenishment)

(n,k)→ (n,m) = Vkm,
with generator matrix V
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M/M/1/∞-loss system: solution

Let (X (t),Y (t)) be an ergodic M/M/1/∞-loss system with environment
states K and system parameters: λ , µ(n), KB (resp. IW ), R , V .
Then for the limiting distribution it holds

π(n,k) : = lim
t→∞

P(X (t) = n,Y (t) = k)

= ξ (n)θ(k)

with

ξ (n) = C−1
ξ

n

∏
i=1

(
λ

µ(i)

)
, Cξ −normalization constant

and θ the unique stochastic solution of

θ λ (IW (R− I )+V )︸ ︷︷ ︸
∈RK×K

= 0 (easier to solve than πQ = 0)
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Embedded Markov chains (EMC)

What it is:
Convert a continuous time process (CTP) into a Markov chain in
discrete time.

How?
Observe the system right after customer leaves the queue.
Calculate transition probabilities P.
Solve π̂P = π̂.

Why?

”Classical method” to analyze M/G/1/∞ queues, which are a superset
of M/M/1/∞ queues.
Without environment the limiting distribution of M/G/1/∞ modeled
as EMC is the same as M/G/1/∞ modeled as CTP.
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Embedded Markov chains

A(2,2)
1,3 = P((2,1),(3,2))

U((3,1), ·) R(·,(3,2))

Figure: Probability to change from (2,1) to (3,2).

U(i ,n)
km := P

((
X (τ1),Y (τ−1 )

)
= (n+ i −1,m)|Z (0) = (i ,k)

)
.

A(i ,n) = U(i ,n)R
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Embedded Markov chains

B(2)
12 = P((0,1),(3,2))

W ((0,1), ·) U(·, ·) R(·,(3,2))

Figure: Probability to change from (0,1) to (3,2).

Wkm := P(Z (σ1) = (1,m)|Z (0) = (1,k))

B(n) =WU(1,n)R
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Transition probabilities

P =


WU(1,0)R WU(1,1)R WU(1,2)R WU(1,3)R . . .

U(1,0)R U(1,1)R U(1,2)R U(1,3)R . . .

0 U(2,0)R U(2,1)R U(2,2)R . . .

0 0 U(3,0)R U(3,1)R . . .
...

...
...

...


before arrival:

W = λ (λ IW −V )−1IW

before departure:

U(i ,0) = ((λ +µ(i))IW −V )−1
µ(i)IW

U(i ,n+1) = U(i ,n)
(

λ

µ(n+ i)

)
µ(n+1+ i)(λ IW +µ(n+1+ i)IW −V )−1

Solve π̂P = π̂
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Results

Let (X (t),Y (t) : t ∈ R0) be an ergodic M/M/1/∞-loss system with states
K and system parameters: λ , µ(n), KB (resp. IW ), R , V . And let
(X̂ (t), Ŷ (t)) : t ∈ N0) be the appropriate Markov chain.
Then for the limiting distribution it holds

π̂(n,k) : = lim
t→∞

P(X̂ (t) = n, Ŷ (t) = k)

= ξ (n)θ̂(k)

with

ξ (n) = C−1
ξ

n

∏
i=1

(
λ

µ(i)

)
, Cξ −normalization constant

and θ̂ the unique stochastic solution of

θ̂

(
IW −

1
λ
V
)−1

IWR︸ ︷︷ ︸
∈RK×K

= θ̂ (easier to solve than π̂P = π̂)
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Continuous time vs embedded Markov chains

Continuous time Embedded Markov chains

transition rates Q transition probabilities P

solve πQ = 0 solve π̂P = π̂

π(n,k) = ξ (n)θ(k) π̂(n,k) = ξ (n)θ̂(k)

ξ (n) = C−1
ξ

∏
n
i=1

(
λ

µ(i)

)
θλ (IW (R− I )+V ) = 0 θ̂C−1

θ

(
IW − 1

λ
V
)−1

= θ̂

in general π 6= π̂ (different from just a queue)

θ =
(

θ̂
(
IW − 1

λ
V
)−1 e

)−1
θ̂
(
IW − 1

λ
V
)−1

θ̂ = (θ IW e)−1 ·θ IWR
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Ongoing research

Why no product form for non-constant arrival rate?
Is exponential distribution necessary for the product form?
Extend results to networks
Link to similar problems: boundaries, starting points
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Thank you for your attention!
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M/M/1/∞-loss system

environment (Y (t))
changes according to V

queueing system (X (t))

λ

lost

serverqueue
µ(n)

blocks/resumes QS
according to KB

changes the environment
according to R

Figure: Loss systems with parameters λ , µ(n), KB (resp. IW ), R, V .

One can describe a loss-system with parameters:

Modellparameter

λ , µ(n), K , KB (IW ), R ,V
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Relation between IW and KB

The matrix IW ∈ {0,1}K×K is a special way to write the blocking states
KB in a matrix form.

(IW )km := δkm1[k /∈KB ]

Example K = {0,1,2,3}, KB = {0}

IW =


0 1 2 3

0 0 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
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Soft drink vending machine: θ -solution

IW =

 0 1 2 3
0 0 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

, R =

 0 1 2 3
0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0

, V =

 0 1 2 3
0 −ν 0 0 ν

1 0 −ν 0 ν

2 0 0 0 0
3 0 0 0 0


θ(λ IW (R− I )+V ) = 0

⇐⇒ (θ(0),θ(1),θ(2),θ(3))


0 1 2 3

0 −ν 0 0 ν

1 λ −(ν +λ ) 0 ν

2 0 λ −λ 0
3 0 0 λ −λ

= 0

=⇒ θ(0)ν = θ(1)λ =⇒ θ(0) =
λ

ν
θ(1)

=⇒ θ(1)(ν +λ ) = θ(2)λ =⇒ θ(2) =
(ν +λ )

λ
θ(1)

=⇒ θ(2)λ = θ(3)λ =⇒ θ(2) = θ(3)

Normalization: Cθ = ∑
3
k=0 θ(k) =

(
λ

ν
+ 2ν

λ
+3
)

θ(1) =⇒ θ(1) = 1
( λ

ν
+ 2ν

λ
+3)
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Stopping times

The paths of Z are cadlag. With τ0 = σ0 = ζ0 = 0 and

τn+1 := inf(t > τn : X (t)< X (τn)), n ∈ N .

denote the sequence of departure times of customers by τ = (τ0,τ1,τ2, . . .),
and with

σn+1 := inf(t > σn : X (t)> X (σn)), n ∈ N ,

denote by σ = (σ0,σ1,σ2, . . .) the sequence of instants when arrivals are
admitted to the system (because the environment is in states of KW , i.e.,
not blocking)
and with

ζn+1 := inf(t > ζn : Z (t) 6= Z (ζn)), n ∈ N ,

denote by ζ = (ζ0,ζ1,ζ2, . . .) the sequence of jump times of Z .
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Matrix invertible?

θ̂

(
IW −

1
λ
V︸ ︷︷ ︸

invertible?

)−1

IWR = θ̂

Properties of IW − 1
λ
V (in general):

”to some extent” diagonally dominant
”to some extent” irreducible

Known facts for finite dimensional matrices:
diagonally dominant =⇒ invertible
irreducible weakly diagonally dominant =⇒ invertible

More general condition for irreversibility (finite dimensional)

Combine and extend: ”to some extent” diagonally dominant and ”to some
extent” irreducible are sufficient.
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Matrix Invertible?

Theorem

Let M ∈ RK×K , where the set of indices is partitioned according to
K = KW +KB , KW 6= /0, and |K |< ∞, whose diagonal elements have
following properties:

|Mkk |= ∑
m∈K\{k}

|Mkm|, ∀k ∈ KB (1)

|Mkk |> ∑
m∈K\{k}

|Mkm|, ∀k ∈ KW (2)

and it holds the flow condition

∀K̃B ⊂ KB , K̃B 6= /0 : ∃ k ∈ K̃B , m ∈ K̃ c
B : Mkm 6= 0 . (3)

Then M is invertible.
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Preprints

Ruslan Krenzler and Hans Daduna.
Loss systems in a random environment.
December 2013.
http://arxiv.org/abs/1312.0539
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Errata

23 March 2014: Corrected expression for the environment equation to
θ(λ IW (R− I )+V ) = 0
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