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Introduction

Signals are present in many different areas of our everyday life. They are used for
communication and entertainment, in engineering and medicine, for traffic control,
space exploration and data compression. In all these cases signals are used to transmit
information. Due to further development during the last decades, in many fields, as
for example in multimedia entertainment and information systems, signals have gained
even more importance. As a consequence, a wealth of signals is created and thus it
might come to a superposition or mixture of signals. In other situations, the information
contained in a signal might be encoded such that it is not readily available. Thus, the
ability to extract information from a signal has become more and more essential for
handling the huge amount of signals.

The extraction of metadata from a signal is used in many applications as for example
weather forecasts, where the relevant information needs to be selected from meteoro-
logical data and satellite images, or robot control, where a matching of visual, audio
and other stimulations is demanded. Most applications, however, refer to audio data,
as for example, acoustic echo cancellation and denoising, automatic transcription of
music, application of audio effects to single instruments in a mixed recording, speaker
separation in video conferences, emotion recognition from speech signals or hearing aids,
which are able to accentuate different sources. In all these situations an efficient method
to analyze the auditory scene in order to extract the essential information is needed.
In many cases of auditory scene analysis, humans possess the ability of suppressing

ambient noises and disturbance sources and to focus on a certain source within a mixture
of multiple sound sources. This phenomenon is known as ‘cocktail party effect’. Many
researchers have focused on the techniques, which humans use to isolate single sources.
These techniques are, for example, based on spatial distances between the sources,
differences in pitch and quality or visual indicators such as lip reading [50]. Nevertheless,
the current state of scientific and technical knowledge is far from attaining similar
results to the human auditory system.
In the last decades, some relatively successful separation algorithms appeared, and

thus investigation on this topic has been intensified (see [1], [2], [10], [43], [50], [51],
[52]). One approach to solve technically the problem of extracting single sources from
a mixed signal is Blind Signal Separation. It relies on no assumptions concerning the
position of sensors or sources in contrast to geometrical source separation by means of
beamforming (e.g. [2]) or similar methods.

Blind Signal Separation (BSS) is a technique which recovers a set of unknown source
signals from a set of mixed signals or other observations. The set of observations is
usually obtained by a set of sensors recording, each a different combination of the source
signals, depending on the position of the sensor. In this context, ‘blind’ stands for
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Introduction

the fact that the sources themselves are not observed and that there is no information
available about the mixing process, i.e. the estimation is performed without almost any
knowledge about the sources, as for example location or activity time. This ‘blindness’
is not a negative property, in contrast, it is precisely the strength of BSS models making
them flexible [7].
The core of all BSS methods is the assumption that the observations are a weighted

sum of the unknown sources (for non-linear mixing models see for instance [47]). This
assumption involves the restriction that there are at least as many observations as
sources. But in many applications there is only one sensor recording the mixed signal.
This situation is called single-channel problem, and there is a strong demand for methods
applicable to single-channel mixtures. To avoid the problem of having less observations
as source signals, usually the classical BSS methods are combined with a preprocessing
step involving time-frequency analysis in order to construct a set of observations (e.g. a
spectrogram).

The different BSS methods can be classified in those operating in the time-amplitude
or in the time-frequency domain. But all of them are statistical methods based on the
minimization of a certain cost functional. This cost functional might vary from method
to method according to the characteristics of the source signals. Since the methods
are statistical ones, the cost functionals are based on second or higher order statistics.
The second order statistics methods optimize the uncorrelatedness of the sources while
the higher order methods involve also moments of higher order and thus optimize the
statistical independence of the source signals [16]. This is what Independent Component
Analysis (ICA) attempts to do by searching non-Gaussian source signals. A measure of
the non-Gaussianity of a signal is for example the negentropy [13].

Recently, Independent Component Analysis (ICA) has become a favourite method in
the field of signal separation. Many methods based on ICA (e.g. [1] or [10]) achieve good
results for stationary sources and sources with steady-state components. But musical
tones and sounds are characterized by their transient effects since musical transients
hold much of the perceptual information within a tone [54]. Therefore, in the last years
scientists have concentrated on the extraction of transitory acoustic sounds (e.g. [17] or
[50]). But since the duration in time of this kind of source signals is very short, it is
difficult to separate them from other sources. However, if an algorithm would provide
any information about the location in time where such a signal is active, separation
would become much easier, since the separation algorithm would have to focus only on
those regions. Nevertheless, in many cases already the detection of sources is quite a
challenging task, especially if a transitory signal, which has a wide frequency band, is
involved.

The objective of this work is to evaluate the usage of dimensionality reduction methods
in signal detection and separation algorithms. Recent developments on this subject
are presented in [18] and [50], but further investigations on the signal processing and
mathematical framework of these algorithms are essentially required [24]. Therefore,
we analyze the application of dimensionality reduction methods in the context of
Independent Subspace Analysis (ISA). In particular, we focus on the detection of

iv



signal spectrogram reduced data componentsSTFT dim red ICA

Figure 1.: General proceeding of ISA with dimensionality reduction.

sources in a mixture of transitory signals.
This detection is done by a combination of time-frequency analysis and Independent

Component Analysis called ISA. In a preprocessing step, time-frequency analysis is
used to obtain a data set from a single-channel signal. This data usually has a high
dimensionality which justifies the usage of dimensionality reduction methods in order
to process the data adequately and to make the existing algorithms more efficient. This
procedure can be improved by analyzing the mathematical background and by running
empirical tests. Therefore, the aim of this work is to illustrate how dimensionality
reduction can be applied in the field of single-channel problems and especially in
combination with ISA. For this purpose we introduce two dimensionality reduction
methods, namely Principle Component Analysis (PCA) and Laplacian Eigenmaps (LE)
in order to compare how they interact with ISA. The general proceeding is illustrated
in Figure 1.

Dimensionality reduction is the transformation of a high-dimensional data set, which
lies on a manifold, into a low-dimensional representation of this manifold. In the optimal
situation, the dimensionality of the low-dimensional representation corresponds to the
intrinsic dimensionality of the data set. In this context, the intrinsic dimensionality is
the smallest number of features needed for characterizing the data. Recently, many
non-linear dimensionality reduction techniques have been proposed (for an overview
see [35] or [39]). In contrast to classical linear techniques such as PCA, the non-linear
techniques are able to handle complex non-linear data as for instance the ‘Swiss roll’,
i.e. a set of points that lie on a spiral-like two-dimensional manifold that is embedded
in a three-dimensional space.
The purpose of this work is to provide an insight into the underlying concepts and

to perform comparative experimental tests of the algorithm. The work is divided into
two parts. In Part I the basic methods and concepts are introduced in order to detail
the mathematical theory behind the detection algorithm in Figure 1. Chapter 1 deals
with time-frequency analysis with emphasis on the short-time Fourier (STFT). Chapter
2 discusses two dimensionality reduction techniques, namely PCA and LE. ICA is
concerned in Chapter 3 and ISA, the core concept, in Chapter 4.
Part II is involved with a case study. Chapter 5 overviews the method. In Chapter

6 the different phases of the algorithm are visualized by means of an example and in
Chapter 7 the signal separation in the case of PCA is discussed. The work ends with a
conclusion in Chapter 8 and a compact disc containing a pdf-version of this work and a
MATLAB implementation of the algorithm.
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1. Time-Frequency Analysis

Time-frequency analysis of signals refers to mathematical transforms of continuous or
discrete data and to characterization as well as manipulation of signals whose frequency
components might vary in time. This kind of analysis is performed in order to obtain
more information about a signal, and with the prospect that also the image of a signal
under a certain transform is more easily interpretable and analyzable than the original
signal. The benefit of these ideas depends strongly on the choice of the transform and
thus on an adequate mathematical model of the signal. Such a method for analysis can
be based on a family of functions and performed by using a series expansion or an integral
transform. Thus, there are many possible transforms and the challenge is to select
an appropriate one. Therefore, we would like the transform to fulfill some elementary
conditions such as the continuity of the transform mapping or the conservation of
information, i.e. no information should be cut off, lost or hidden as a result of the
transform. In [20] these mathematical requirements are formulated as follows:

• The transform should be continuous: Quantitatively small changes in the signal
should cause only quantitatively small effects in the transform’s image.

• The transform should be continuously invertible.

• There should exist an invertible discrete version of the transform.

• There should exist a stable numerical algorithm.

One of the first analysing systems is the well-known Fourier series, developed in the
early 19th century by Jean Baptiste Joseph Fourier [21]. Primarily, Fourier has worked
on heat conduction in different solids and proposed an expansion of the initial condition
for the temperature in a series of sine terms. Nowadays, what we call the Fourier series
of a function f ∈ Lp[−π, π], 1 ≤ p <∞ is its expansion in series of complex exponentials
given by

f(x) =
∑
k∈Z

f̂(k)eikx,

with the Fourier coefficients

f̂(k) = 1
2π

π∫
−π

f(t)e−iktdt. (1.1)

Since the absolute value of the coefficients |f̂(k)| can be interpreted as the amplitude
and the argument arg(f̂(k)) as the phase corresponding to the frequency k ∈ Z, Fourier
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1. Time-Frequency Analysis

series provide a useful tool for the analysis of periodic functions. But as the coefficients
f̂(k) in (1.1) depend strongly on f , each minimal local change of f will cause a global
change of the coefficients f̂(k). Such behaviour might cause a dramatically increasing
computation time, in particular in the case of integral transforms. For this reason,
localized transforms based on families of compactly supported functions are attracting
more and more interest. Among these are short-time Fourier analysis and wavelet
multiresolution analysis (see [15]). In this work we introduce the short-time Fourier
transform on L2(R) and discuss some of its properties. More information can be found
for example in [48], [53] or [55]. In Part II we will use the short-time Fourier transform
in the context of signal detection and separation, but any other transform can be used
as well (see [10]).

1.1. Fourier Transform
For a better understanding of the short-time Fourier transform we shall start with the
Fourier transform. The Fourier transform is an integral transform which is, in some
sense, a generalization of the Fourier series as it is defined for all integrable functions
f ∈ L1(R). In particular, f does not necessarily need to be periodic.

Definition 1.1. For a function f ∈ L1(R) its Fourier transform Ff is defined by

Ff(ω) =
∫
R

f(x)e−iωxdx,

for all ω ∈ R.

Definition 1.2. For a function g ∈ L1(R) its inverse Fourier transform F−1g is defined
by

F−1g(t) = 1
2π

∫
R

g(ω)eiωtdω,

for all t ∈ R.

Theorem 1.1 ([20]). For a function f ∈ L1(R) satisfying Ff ∈ L1(R) the Fourier
inversion formula

f(t) = 1
2π

∫
R

Ff(ω)e−iωtdω

holds for almost all t ∈ R with equality at the points of continuity of f .

Proof. See [20].

Remark 1. The Fourier transform of a signal f is its frequency spectrum. The frequency
spectrum provides information about the frequencies which are present in the signal.
Usually the Fourier transform is complex-valued and thus the frequency spectrum can be
decomposed in amplitude spectrum |Ff | and phase spectrum arg(Ff).
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1.1. Fourier Transform

To obtain numerical solutions of complex mathematical problems discretization is
necessary. But we have to take into account, that the discrete solution should converge
to the solution of the original problem and that its computation can be done efficiently.
To begin with, we concentrate on the convergence. Later on, we shall introduce the
FFT algorithm which is computationally efficient. The Nyquist-Shannon Sampling
Theorem is a fundamental result in signal processing which has been found in the early
20th century. It gives a lower bound on the number of sampling points such that a
continuous signal can be reconstructed exactly from a discrete set of samples.

Theorem 1.2 (Nyquist-Shannon Sampling Theorem). Let f ∈ L1(R) ∩ C(R) be band-
limited to [−πδ, πδ] for δ > 0, i.e.

f(t) = 1
2π

πδ∫
−πδ

Ff(ω)eiωtdω,

and Ff ∈ L1(R). Then, for every t ∈ R, f can be reconstructed from its sampled values
at the points tk = k

δ , k ∈ Z, via the formula

f(t) =
∞∑

k=−∞
f(tk)

sin(πδ(t− tk))
πδ(t− tk)

=
∞∑

k=−∞
f(tk) sinc(δt− k).

Moreover, the series converges uniformly and absolutely on R.

Proof. See [33].

Remark 2. The length of the support of the Fourier transform of f , i.e. 2πδ is called
bandwidth of f . The sampling frequency δ is known as the Nyquist rate, which is
the minimum rate at which the function f needs to be sampled in order to be exactly
reconstructible.

As there is a need of discrete transforms, we now introduce the discrete version of
the Fourier transform. In the following, Zn denotes the set {0, . . . , N − 1} ⊂ N, thus
`∞(ZN ) ' RN holds.

Definition 1.3. For a discrete function f ∈ `∞(ZN ) its discrete Fourier transform
FDf is defined by

(FDf)j =
N−1∑
k=0

fke
− 2πijk

N , (1.2)

for j ∈ ZN .

Definition 1.4. For a discrete function g ∈ `∞(ZN ) its discrete inverse Fourier trans-
form F−1

D g is defined by

(F−1
D g)k = 1

N

N−1∑
j=0

gje
2πijk
N ,

for k ∈ ZN .
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1. Time-Frequency Analysis

Theorem 1.3. For a discrete function f ∈ `∞(ZN ) the discrete Fourier inversion
formula

fk = (F−1
D FDf)k

holds for all k ∈ ZN .

Proof. See [53].

It is easy to see that a straightforward computation of the discrete Fourier transform is
of complexity O(N2) as the computation for each of the N components is of complexity
O(N). In order to compute the discrete Fourier transform efficiently, we use the so
called Fast Fourier Transform (FFT). There are different algorithms to perform the
FFT, among them the Cooley–Tukey algorithm proposed in 1965 [14]. This algorithm
is the most common FFT algorithm and a powerful tool for a fast computation of the
discrete Fourier transform because it reduces the complexity to O(N log2(N)). It is
based on the factorization of the period length N , i.e. we suppose N = N1N2 for some
N1, N2 ∈ Z. After the choice of N1 and N2 we can express the indices j and k from
(1.2) as

j = j1N1 + j0, j0 ∈ ZN1
, j1 ∈ ZN2

k = k1N2 + k0, k0 ∈ ZN2
, k1 ∈ ZN1

.

From this decomposition it follows that

e−
2πijk1N2

N = e−
2πi(j1N1+j0)k1N2

N = e−2πij1k1
N1N2
N e−

2πij0k1N2
N = e−

2πij0k1N2
N .

Hence, we can decompose the sum in (1.2) and thus we get

(FDf)j = (FDf)j1N1+j0

=
N2−1∑
k0=0

N1−1∑
k1=0

fk1N2+k0
e−

2πi(j1N1+j0)(k1N2+k0)
N

=
N2−1∑
k0=0

N1−1∑
k1=0

fk1N2+k0
e−

2πij0k1N2
N e−

2πi(j1N1+j0)k0
N

=
N2−1∑
k0=0

e−
2πi(j1N1+j0)k0

N

N1−1∑
k1=0

fk1N2+k0
e−

2πij0k1N2
N

=
N2−1∑
k0=0

f̃j0,k0
e−

2πi(j1N1+j0)k0
N ,

where f̃j0,k0
=
∑N1−1
k1=0 fk1N2+k0

e−
2πij0k1N2

N . Since f̃ has N1N2 = N elements, we need
O(NN1) operations to compute f̃ . For similar reasons, it takes O(NN2) operations to
obtain FDf from f̃ . Thus, the composed algorithm requires O(N(N1 +N2)) operations
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1.2. Short-Time Fourier Transform

to calculate FDf from f . A factorization of N into more than two integers allows a
successive application of this procedure resulting in O(N(n1 +n2 + · · ·+nm)) operations
for N = n1n2 . . . nm. As a consequence, for N = 2m we obtain m = log2(N) which
leads to a complexity of O(N log2(N)). Therefore, it is reasonable to take 2m, m ∈ Z,
samples of a given continuous signal.
In a more global context, we can consider the Fourier transform as an operator
F : L2(Rn)→ L2(Rn). The operator F is linear and continuous as we can see from the
following theorem.

Theorem 1.4 (The Rayleigh-Plancherel theorem). Let f ∈ L1(R). If either f or its
Fourier transform is square integrable over the real line, i.e. f ∈ L2(R) or Ff ∈ L2(R),
then we have

‖f‖2
L

2(R) = 1
2π‖Ff‖

2
L

2(R).

Proof. See [45].

Remark 3. In the discrete case
N−1∑
k=0
|fk|

2 = 1
N

N−1∑
k=0
|(FDf)k|

2

holds for any discrete function f ∈ `∞(ZN ) (see [53]).

1.2. Short-Time Fourier Transform
The Fourier transform uses non-compactly supported functions for the analysis of signals.
As we have already stated before, this might cause instability with respect to local
manipulation in the time or frequency domain. In order to avoid this phenomenon, we
multiply the function f by a window function ϕ and apply the Fourier transform to
their product.

Definition 1.5 ([20]). Assume that ϕ ∈ L1(R)∩L2(R) and f ∈ L2(R). For τ ∈ R and
ω ∈ R we define

Fϕf(ω, τ) =
∫
R

f(t)ϕ(t− τ)e−iωtdt.

Then Fϕf is called the short-time Fourier transform (STFT) of f .

This localization gives us the frequency content of the signal in a concrete window
ϕ with center τ such that the short-time Fourier transform depends on two variables,
the frequency ω and the center of localization τ . It can be shown (see [20]) that
fϕ(·− τ) ∈ L1(R)∩L2(R) and thus the STFT has properties analogue to the properties
of the Fourier transform.
In the previous definition we mentioned a window function ϕ. How does such a

function look like? Usually, a window function is a continuous, compactly supported,
non-negative and symmetric function. In fact, this definition can be generalized claiming
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1. Time-Frequency Analysis

that the function decreases sufficiently fast to zero away from the origin. The STFT
was first used by Gábor in 1946. In [22], Gábor considers the Gaussian window

φσ(t) = 1
2
√
πσ

e−
t
2

4σ

with σ > 0. Due to the importance of the STFT in many applications, the STFT using
this special window is called Gabor transform.
From the huge class of window functions we like to introduce the Hann window

h(t) = 1
2

(
1 + cos

(2πt
T

))
,

where T is the window size, i.e. supph ⊂ [−T
2 ,

T
2 ] (see [5]).

Definition 1.6. For a function g ∈ L1(R2) the inverse short-time Fourier transform
F−1
ϕ g is defined by

F−1
ϕ g(t) = 1

2πc

∫
R

∫
R

g(ω, τ)eiωtdωdτ,

where c =
∫
R ϕ(t)dt.

Theorem 1.5. For a function f ∈ L1(R)∩L2(R) satisfying Ff ∈ L1(R), the inversion
formula

f(t) = F−1
ϕ Fϕf(t)

holds for all t at which f is continuous.

Proof. A simple computation gives the result:

F−1
ϕ Fϕf(t) = 1

2πc

∫
R

∫
R

Fϕf(ω, τ)eiωtdωdτ

= 1
2πc

∫
R

∫
R

∫
R

f(s)ϕ(s− τ)e−iωsdseiωtdωdτ

= 1
2πc

∫
R

ϕ(τ)dτ
∫
R

∫
R

f(s)e−iωsdseiωtdω

= 1
2π

∫
R

Ff(ω)eiωtdω

= F−1Ff(t)
= f(t).

Like in the case of the continuous Fourier transform, we introduce a discrete version
of the STFT (see [44]). As shown in Figure 1.1, we consider a segmentation of the
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1.2. Short-Time Fourier Transform

window size D

hop size h

D points FFT
D points FFT

time [samples]

time [window]

fr
eq
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nc

y

STFT

Figure 1.1.: Short-time Fourier transform and construction of spectro-
gram.

signal into small segments of length D at distance h. This segmentation is obtained
by multiplication of the signal by a discrete, compactly supported window of length D
with center lh. Subsequently, the FFT algorithm is applied to the segments in order to
compute a discrete spectrogram.

Definition 1.7. Assume that ϕ ∈ `∞(ZD) is a discrete window with ϕk 6= 0 and
f ∈ `∞(ZN ). For n and h ∈ N with (n − 1)h = N − 1 − D, we define the discrete
short-time Fourier transform Fϕ,Df of f by

(
Fϕ,Df

)
j,l

=
D−1∑
k=0

fk+lhϕke
− 2πijk

D =
(
FD (fk+lhϕk)

D−1
k=0

)
j
,

for j ∈ ZD and l ∈ Zn. The parameter h is called hop size and D is the window length.

Definition 1.8. For ϕ, h and n as in Definition 1.7 with h ≤ D and g ∈ `∞(ZD × Zn)
the discrete inverse short-time Fourier transform is defined by(

F−1
ϕ,Dg

)
k

= 1
ck

∑
(j,l)∈ZD×Zn:j+lh=k

(
F−1
D

(
gi,l
)D−1
i=0

)
j
,

for k ∈ ZN , where
ck =

∑
(j,l)∈ZD×Zn:j+lh=k

ϕj .
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1. Time-Frequency Analysis

Remark 4. The sum in Definition 1.8 is not empty if h ≤ D. This follows from the
decomposition of k by Euclidean division by h. This seems reasonable since otherwise
the hop size would be larger than the window size and application of the discrete STFT
would cause the loss of parts of the function f .

Theorem 1.6. For a function f ∈ `∞(ZN ) and ϕ, h and n as in Definition 1.7 with
h ≤ D the inversion formula

fk =
(
F−1
ϕ,DFϕ,Df

)
k

holds for all k ∈ ZN .

Proof. Computation leads to(
F−1
ϕ,DFϕ,Df

)
k

= 1
ck

∑
(j,l)∈ZD×Zn:j+lh=k

(
F−1
D

((
Fϕ,Df

)
i,l

)D−1

i=0

)
j

= 1
ck

∑
(j,l)∈ZD×Zn:j+lh=k

(
F−1
D

((
FD (fm+lhϕm)D−1

m=0

)))
j

= 1
ck

∑
(j,l)∈ZD×Zn:j+lh=k

fj+lhϕj

= 1
ck

∑
(j,l)∈ZD×Zn:j+lh=k

fkϕj

= fk.

Remark 5. By means of the short-time Fourier transform we get the frequency range
of a signal f as a function of time: the spectrogram of f . The spectrogram displays
the values |Fϕf(ω, τ)| in a time-frequency diagram. The values |Fϕf(ω, τ)| can be
interpreted as the frequency range of f at time τ . Compared to the common frequency
spectrum (Remark 1) the spectrogram makes more information that is contained in f
accessible. In order to reconstruct the signal from the spectrogram by the inversion
formula, the phase spectrogram arg(Fϕf(ω, τ)) is needed as well.
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2. Dimensionality Reduction

Since real life data is diverse and complex, a given data set remains very high-dimensional
even after discretization. Analysis and interpretation of this kind of data sets pose some
mathematical and computational challenges where traditional statistical methods might
fail. In recent years, controlling and processing of such data has taken on a greater
significance as it has become possible to easily transfer, store and record a huge amount
of data due to extremely powerful and efficient computers and the expansion of storage
capacity. Therefore, in many scientific disciplines such as physics, geography, medicine,
musicology, biology and social sciences, to mention just a few, large quantities of raw
data have to be handled and hence high-dimensional data sets occur frequently in the
fields of data analysis and machine learning.
To understand, visualize and process the structure of this data many new methods

known as dimensionality reduction methods have been developed during the last decades.
These innovative analytical and numerical tools for data analysis are mainly based on
geometrical concepts.
In our case, a basic characteristic of time-frequency data obtained from a signal

transform, such as short-time Fourier transform (STFT) or a similar transform, is the
high dimensionality of the Euclidean space in which the data is embedded. In this
context, a logical consequence is that for many applications a reduction of the data’s
dimensionality might improve the quality and speed up the computation of the data
analysis. We observe that in many cases less than all information contained in the
data points is relevant for understanding the underlying characteristics or properties
of the data. Also low-dimensional data sets are much easier to operate with in case of
classification, visualization or compression.

As a consequence, we would like to reduce the dimensionality of the given data. At this
point dimensionality reduction comes in. Dimensionality reduction means to embed the
data into a significant manifold of lower dimension within the higher dimensional space
in order to encode important information of the data set. This lower dimension should
ideally correspond to the intrinsic dimensionality of the data and different strategies
are available for estimating this dimensionality (see [36] or [39])).

There are two major types of dimensionality reduction methods: linear and non-linear
ones. In this context, linearity refers to the idea that each data point on the manifold is
a linear combination of the original data points, i.e. we assume the manifoldM to be a
linear subspace (see [19]). Non-linear techniques are mainly based on at least one of the
following qualities (see [39]):

1. Preservation of global properties or structures of the data set in the low-dimensional
data set,

11



2. Dimensionality Reduction

2. Preservation of local properties or structures,

3. Composition of linear techniques.
In the following sections we discuss two classical dimensionality reduction techniques.
We first present the well-known and frequently used Principal Component Analysis
(PCA) method. Later, we introduce Laplacian Eigenmaps as a generalization of this
concept.

2.1. Basic Notations
Mathematically, the above problem can be formulated as in [25]: Let X = {xk}

n
k=1 ⊂ RD

be a data set of dimensionality D, also called a point cloud data. If much of the
information described by X is redundant and can be neglected we try to find a low-
dimensional data set Y ⊂ Rd which best represents X conserving the characteristics of
the data. The dimensionality d of Y is called intrinsic dimensionality of the data and
assumed to satisfy d� D. This process is called dimensionality reduction.
An additional concept is the idea of manifold learning. In this context, the data is

assumed to lie on (or nearby) a (smooth) manifoldM embedded in a D-dimensional
space. More precisely, we assume X to be sampled fromM, a p-dimensional smooth
compact manifold of RD. In mathematical terms, we search a homeomorphism B :
RD ⊃M→ Ω ⊂ Rd, where Ω is a p-dimensional submanifold of Rd. Recall that due to
the Whitney Embedding Theorem any smooth p-dimensional connected manifold can
be embedded in Rd, for all d with d ≥ 2p+ 1 (see [34]).
The objective is to construct a low-dimensional data set Y representing X and

its structure using the geometrical informations given by M (see Figure 2.1). The
homeomorphism B maps the data set X with dimensionality D onto a new data set Y
with dimensionality d preserving the main structure of the data.

X ⊂ M ⊂ RD

Y ⊂ Ω ⊂ Rd

P B

In practice, neither the manifold M nor its low-dimensional representation Ω is
known. Therefore, we can only approximate the homeomorphism B by a dimensionality
reduction mapping P as shown in the diagram above.

Combining the key concepts of dimensionality reduction and manifold learning allows
the development of more sophisticated dimensionality reduction algorithms. The PCA
method and Laplacian Eigenmaps are two examples for such methods. In this setting
usually neither the parameter d nor the manifoldM is known.
Remark 6. In our situation the existence of such a manifold is a reasonable assumption
since each source signal has a characteristic frequency range, which does not include all
frequencies, i.e. the considered signals are band-limited.
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2.2. PCA - Principal Component Analysis

M

Ω

xk

yk

Figure 2.1.: A manifoldM⊂ RD is embedded
in a low-dimensional space.

2.2. PCA - Principal Component Analysis
Principal component analysis (PCA) is probably one of the most frequently used
methods in multivariate data analysis. As PCA has many applications, it was discovered
independently in different scientific fields and improved by many scientists. It was first
introduced by Pearson [42] in 1901 in a biological framework. In the field of stochastic
processes PCA is also known as the Karhunen-Loève transform.

As stated before, we consider a data set X = {xk}
n
k=1 ⊂ RD. In the concept of PCA

the data points are assumed to lie on or nearby a linear subspace of RD. The set Y is
obtained by projecting the set X onto this subspace. The aim is to find a projection
which preserves as much information as possible and discards the redundancy in terms
of correlation. This is done by using a principal axis transformation. The redundancy
can be measured by the covariance matrix of the data. In this section we proceed as
Lee and Verleysen in [35].

2.2.1. Preprocessing
Let us suppose the data setX to be n realizations of a random vector X = (X1, . . . ,XD)T .
It might be more convenient to use a matrix notation X = (x1, . . . , xn) ∈ RD×n. In the
following we switch between the data set and the matrix notation depending on context
and situation. The idea of PCA is to assume the variables of X to result from a linear
transform W ∈ RD×d of d latent variables Y = (Y1, . . . ,Yd)

T :

X = WY. (2.1)

The variables in Y are assumed to have a Gaussian distribution. The matrix W is
supposed to represent an axis transformation, i.e. its columns are normalized and
orthogonal to each other. Therefore, we have

W TW = Id,

where Id is the unit matrix of dimension d (note that WW T is in general not identical
to ID). We call a matrix orthonormal even though only its columns or rows are
orthonormal, i.e. the matrix W has not to be quadratic.
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2. Dimensionality Reduction

For the further considerations we need the random variables Xi to be centered, i.e. of
zero-mean. Since in real situations this is not very likely, we center X in a preprocessing
step by subtracting the expectation E(X ). This expectation depends on the distribution
of X , which is unknown. Hence, the expectation must be approximated by the sample
mean:

E(X ) ≈ 1
n

n∑
k=1

xk = 1
n
X1n,

where 1n is the column vector of length n containing ones. The centered data set is
obtained by

X − 1
n
X1n1Tn .

The task is now to identify W and d.

2.2.2. Criteria leading to PCA
The orthonormal transform W T converts the given set of possibly correlated variables
Xi into a set of uncorrelated variables called principal components. Uncorrelated means
that there is no linear dependency between them, i.e. their covariance is zero. The first
principal component is the axis in whose direction the widest variability or scattering
of the data occurs. As the variance of a variable is a measure for its range of spread,
the first component is the one with the largest variance. The following components
each have the largest variance under the constraint of being orthogonal to the previous
ones. This leads to an uncorrelated set of variables Y. In other words, the axes of the
coordinate system are rotated in such a way that the covariance matrix CX = E(XX T )
is diagonalized.
The (i, j)th element of the covariance matrix CX is the covariance between Xi and
Xj . Therefore, the covariance matrix is symmetric and the diagonal elements represent
the variances of the random variables Xi. Since the covariance matrix is also positive
semidefinite there exists a decomposition

CX = V ΛV T ,

where V ∈ RD×D is an orthonormal matrix whose ith column is an eigenvector vi of
CX and Λ is the diagonal matrix whose diagonal elements are the corresponding real
eigenvalues λi ≥ 0 in descending order.

A key requirement for successful dimensionality reduction is to loose as little informa-
tion of the data as possible by applying the transform W T . That means to preserve as
much of the global variance var(X ) = tr(CX ) of the data as possible, i.e.

var(X ) = tr(CX ) ≈ tr(CY) = var(Y).

Lemma 2.1. In the above setting

var(X ) ≥ var(Y)

holds.
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Proof. From (2.1) and the linearity of the expectation E we deduce

CX = E(XX T )
= E(WYYTW T )
= WE(YYT )W T

= WCYW
T . (2.2)

Let uj be an eigenvector of CY and let µj be the corresponding eigenvalue. With (2.2)
and

CXWuj = WCYW
TWuj = Wµjuj = µjWuj

we observe that the eigenvalues of CY are eigenvalues of CX as well and hence

var(Y) = tr(CY) =
d∑
j=1

µj ≤ tr(CX ) = var(X ).

We can conclude that the unknown variables in Y can be assumed to be uncorrelated.
This leads to a diagonal covariance matrix CY of the centered Y . Our aim is to identify
the d unknown uncorrelated variables in Y from the given covariance matrix of X , i.e.
we have to find W , such that var(Y) is maximal for a given d (see Lemma 2.1). From
the next lemma it follows that this can be achieved for W = V ID×d.

Lemma 2.2. Let F ∈ RD×D be symmetric and positive semidefinite. Among all
orthonormal matrices W ∈ RD×d, the trace of D = W TFW ∈ Rd×d is maximal if

W = V ID×d

holds, where V contains the eigenvectors of F ordered by the size of the corresponding
eigenvalues.

Proof. Since F = V LV T , where L is diagonal containing the eigenvalues li of F ordered
by size and V TV = V V T = ID we get for C = V TW

tr(D) = tr(W TFW )
= tr(W TV V TFV V TW )
= tr(W TV LV TW )
= tr(CTLC)

=
d∑
j=1

D∑
i=1

lic
2
ij . (2.3)

The matrix C is orthonormal because of the orthonormality of V and W :

CTC = W TV V TW = Id.
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2. Dimensionality Reduction

Hence, we can expand C to an orthonormal square matrix C̃ and thus for the rows of
C̃ it follows that c̃ic̃

T
i = 1, for i = 1, . . . D, which leads to

d∑
j=1

c2
ij ≤ 1. (2.4)

Using (2.3), (2.4) and li ≥ li+1 yields

tr(D) =
D∑
i=1

li

d∑
j=1

c2
ij

=
d∑
i=1

li

d∑
j=1

c2
ij +

D∑
i=d+1

li

d∑
j=1

c2
ij

≤
d∑
i=1

li

d∑
j=1

c2
ij +

D∑
i=d+1

ld

d∑
j=1

c2
ij

=
d∑
i=1

li

d∑
j=1

c2
ij + ld

d∑
j=1

D∑
i=d+1

c2
ij

=
d∑
i=1

li

d∑
j=1

c2
ij + ld

d∑
j=1

(
1−

d∑
i=1

c2
ij

)

=
d∑
i=1

li d∑
j=1

c2
ij + ld

1−
d∑
j=1

c2
ij


≤

d∑
i=1

li
 d∑
j=1

c2
ij + 1−

d∑
j=1

c2
ij


=

d∑
i=1

li.

For W = V ID×d we get C = ID×d and thus with (2.3)

tr(D) =
D∑
i=1

li

d∑
j=1

c2
ij =

d∑
i=1

li

holds, which finishes the proof.

Remark 7. If the PCA model in (2.1) is fully respected, the smallest d is given by
D − dim(ker(CX )). The trace tr(CY) is maximal if we keep all eigenvalues of CX
apart from the zero eigenvalues. The number of zero eigenvalues of CX is given by
dim(ker(CX ))
In real situations we often observe some noise and thus the PCA model (2.1) might

be not fully respected. This can result in a situation where all eigenvalues of CX are
larger than zero. In this case, d cannot be estimated without loss of information. But
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2.2. PCA - Principal Component Analysis

assuming that the variances of the unknown variables Y are larger than the variance of
the noise, it is a natural procedure to choose the eigenvectors associated to the largest
eigenvalues. Thus, we have almost the same situation as before.

Remark 8. In the above setting the random variables Xi and their probability densities
are unknown. Therefore, we need to estimate the covariance matrix CX using the given
data X. As known from empirical statistics, for a random vector X this can be done
by CX ≈ 1

nXX
T . The factor 1

n is neither changing the algebraic multiplicity of zero
eigenvalues nor the eigenspaces, thus it is sufficient to consider XXT .

According to the above explained background, PCA can be performed by a singular
value decomposition of X, i.e. by an eigenvalue decomposition of the data’s covariance
matrix XXT . Therefore, the subspace on which we project the data set X is given by
the linear span of eigenvectors of the covariance matrix.

As the shortest distance from a point to a subspace is the distance from this point to
its orthogonal projection into the subspace, minimizing the sum of these distances is an
alternative formulation of the above explained problem.
The following lemma summarizes these observations.

Lemma 2.3. Let X = (x1, . . . , xn) ∈ RD×n be a matrix whose columns represent a
centered data set and let V be a matrix containing the eigenvectors of XXT ordered by
the size of the corresponding eigenvalues.

i) The global variance of the reduced data set Y = W TX is maximized among all
orthogonal matrices W ∈ RD×d if W = V ID×d, i.e.

var(Y ) = tr(Y Y T ) = max
W̃

tr(W̃ TXXT W̃ ) = max
W̃

n∑
k=1
‖W̃ Txk‖

2.

ii) The sum of distances from the data points xk to their images W Txk is minimized
among all orthogonal matrices W ∈ RD×d if W = V ID×d, i.e.

errPCA(W,X) = min
W̃

n∑
k=1
‖xk − W̃

Txk‖
2.

Proof. The statement i) is a direct consequence of Lemma 2.2.
ii). Bearing in mind the orthogonality property of W the well-known Pythagoras’

Theorem gives us

‖xk‖
2 = ‖xk −W

Txk‖
2 + ‖W Txk‖

2, for k = 1, . . . , n.
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xk dk

v1

v2

Figure 2.2.: Identification of the principal com-
ponents as the orthogonal directions in which
the data is scattering the most.

Hence, we deduce the relation between the sum of distances and the global variance as

var(W TX) =
n∑
k=1
‖W Txk‖

2

=
n∑
k=1
‖xk‖

2 − ‖xk −W
Txk‖

2

=
n∑
k=1
‖xk‖

2 − errPCA(W,X).

From this equation it follows directly that a minimization of errPCA(W,X) is equivalent
to a maximization of var(W TX).

Figure 2.2 serves to illustrate the general idea of PCA for the case of D = 2 and d = 1.
It depicts the distances dk whose sum has to be minimized and also the directions vi in
which the data is distributed with maximum variance. We have learned from Lemma
2.3 that this problem can be solved by considering the eigenvalue decomposition of the
covariance matrix.
In the case where Equation (2.1) is fully respected, it is obvious that there exists

a back projection, projecting the data from the subspace back to the original high
dimensional space using W . But if (2.1) is not fully respected, i.e. the data is not lying
in the subspace (just near by), it might be difficult to find an exact back projection and
sometimes it does not even exist. To deal with this problem, we assume the data to lie
in the subspace, and if it does not, we neglect the error.
In this section we have introduced a dimensionality reduction method P = W T

(compare Section 2.1). To conclude this section we define PCA as follows.
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2.3. LE - Laplacian Eigenmaps

Definition 2.1 ([13]). The PCA of a random vector X of size D with finite covariance
CX is a pair {W,CY} of matrices such that

i) the covariance factorizes into

CX = WCYW
T ,

where CY is diagonal with positive entries and W has full column rank d.

ii) W is a D × d matrix whose columns are orthogonal to each other, i.e. W TW is
diagonal.

2.3. LE - Laplacian Eigenmaps
The second dimensionality reduction method used in this work is called Laplacian
Eigenmaps (LE). This method belongs to the family of non-linear dimensionality
reduction techniques and is, as PCA, based on spectral decomposition. LE can be seen
as a generalization of PCA from linear subspaces to arbitrary smooth p-manifolds. In
this context, a p-manifold is a topological space, which is locally homeomorphic to the
Euclidean space Rp. LE is a topology preserving method, i.e. it reduces the dimension
of a given data set by preserving rather its topology than its pairwise distances (as
for example Isomap [49]). In contrast to other methods, LE is a local technique whose
operating principle is the use of ‘information contained in the data in order to establish
the topology of the data set and compute the shape and topology of the embedding
accordingly’ [35]. LE was first used in 2002 by Belkin and Niyogi [3].
In order to preserve the topological structure of the data set (compare Figure 2.3),

we try to minimize the distances between neighboring data points. This is done using
graph theoretical tools like the Laplacian operator on a graph which is closely related
to the graph’s adjacency matrix.

Figure 2.3.: Laplacian Eigenmaps preserves the neighborhood structure.

2.3.1. Neigborhood graph
As for the PCA method, we consider a data set X = {xk}

n
k=1 ⊂ RD and we search a

low dimensional representation Y = {yk}
n
k=1 ⊂ Rd of X. Further, we assume this data
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2. Dimensionality Reduction

to lie on or near by a (unknown) smooth p-manifold.
Let us consider the data points as vertices vk ∈ Vn of an undirected graph G. Two

vertices are connected if the corresponding data points are adjacent. If the set of edges
is denoted by E, the graph G is given by

G = (Vn, E) .

Let us denote by e(k, i) the edge connecting the vertices vk and vi. Although the
manifold is unknown, it can be represented with good accuracy by the graph G if n is
large enough. In this context, adjacent refers either to ε-ball neighborhoods or to r-ary
neighborhoods. The parameter ε, or r respectively, have to be chosen in such a way
that the constructed graph G has no isolated vertices. The neighborhood relationship is
usually described by a (sparse) adjacency matrix A ∈ Rn×n with

aki =
{

1 if e(k, i) ∈ E
0 otherwise.

It is obvious that A is symmetric and has no zero column. As before, the purpose is
now to map the given data set X into a data set Y of lower dimensionality with the
same adjacency relationships. Therefore, we have to define a criterion to measure the
accuracy of the mapping (see [3]):

errLE(W,Y ) = 1
2

n∑
k,i=1

‖yk − yi‖
2wki (2.5)

with W = (wki)k,i=1,...,n being a symmetric weight matrix. The matrix W is defined by
the adjacency matrix A as wki = 0, if aki = 0 and wki ≥ 0 otherwise. Thus G becomes a
weighted graph. The weights wki to be determined shall ensure the preservation of the
topology, i.e. they can be interpreted as penalties. These penalties should be heavier
for edges e(k, i) between vertices associated to close data points xk and xi, and small
for edges between vertices associated to far away data points. To minimize the error
term we consider the following alternative characterization.

Lemma 2.4. In the above setting let D be the diagonal matrix defined by Dkk =∑n
i=1wki. Then it holds

errLE(W,Y ) = tr(Y LY T ),

where L = D −W is the Laplacian matrix of the graph G. By Y we denote the data
matrix containing column by column the low-dimensional representation of X.

Proof. Let us denote by ȳj the transposed of the jth row of the data matrix Y . Using
the definition of the norm, the Binomial Theorem and the fact that W is symmetric,
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we get

errLE(W,Y ) = 1
2

n∑
k,i=1

‖yk − yi‖
2wki

= 1
2

n∑
k,i=1

d∑
j=1

(
yjk − yji

)2
wki

= 1
2

d∑
j=1

n∑
k,i=1

(
y2
jk + y2

ji − 2yjkyji
)
wki

= 1
2

d∑
j=1

 n∑
k=1

y2
jk

n∑
i=1

wki +
n∑
i=1

y2
ji

n∑
k=1

wki − 2
n∑

k,i=1
yjkyjiwki


= 1

2

d∑
j=1

(
n∑
k=1

y2
jkDkk +

n∑
i=1

y2
jiDii − 2ȳTj Wȳj

)

= 1
2

d∑
j=1

(
2

n∑
k=1

y2
jkDkk − 2ȳTj Wȳj

)

=
d∑
j=1

(
ȳTj Dȳj − ȳ

T
j Wȳj

)

=
d∑
j=1

ȳTj Lȳj

= tr(Y LY T ).

Remark 9. We observe that the Laplacian matrix is symmetric and positive semidefinite.
This follows from the symmetry of W and D and the proof of Lemma 2.4 since

vTLv = 1
2

n∑
k,i=1

(vk − vi)
2wki ≥ 0,

for all v ∈ Rn.

Therefore, minimizing the error errLE is equivalent to finding an Y which minimizes
tr(Y LY T ). Since D is positive definite (because the graph G is connected) it induces
an inner product

〈xk, xi〉 = xTkDxi

on Rn. In the following orthogonality refers to this inner product.
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2.3.2. Criteria leading to LE
We would like the solution Y to be unique in the sense of translation invariance. This
requirement results from the fact that a translation of the whole data set Y does not
change the distances between the data points, i.e. if Y is a minimizer, then Y +C1d×n,
where C ∈ Rd×d is a diagonal matrix, is also a minimizer. Therefore, we additionally
demand that

Y D1n×1 = 0. (2.6)

This constraint is reasonable since for two solutions Y1 and Y2 = Y1 + C1d×n which
fulfill the constraint (2.6),

Y1D1n×1 = 0 = (Y1 + C1d×n)D1n×1 = C1d×nD1n×1 (2.7)

holds. Since in (2.7) we have D 6= 0, it follows C = 0 and hence Y1 = Y2. The constraint
Y D1n×1 = 0 implies that each row of Y is orthogonal to the constant vector (1, . . . , 1).

Furthermore, from (2.5) it follows that the minimization problem has a trivial solution
where all data points are mapped on a single point. Such a solution has the form
Y = C1d×n, where C ∈ Rd×d is a diagonal matrix. This solution should be excluded.
Since the problem is already unique in the sense of translation invariance, we only need
to exclude the solution Y = 0. This can be done together with a normalization (to
remove an arbitrary scaling factor in the embedding) by Y DY T = Id×d (see [4]).

Theorem 2.1. The solution of

argmin
Y DY

T=Id×d
Y D1n×1=0

tr(Y LY T ) (2.8)

is provided by a matrix of eigenvectors corresponding to the d smallest non-zero eigen-
values of the generalized eigenvalue problem

Lv = λDv,

i.e. Y = (f1, . . . fd)
T with Lfj = λjDfj and λj 6= 0.

For the proof of this theorem we need two standard statements concerning necessary
and sufficient conditions of optimization problems, which we present without their
proofs.

Theorem 2.2 (Karush-Kuhn-Tucker). Let x? be a local solution of

Minimize f(x) on M = {x ∈ Rn : (g, h) (x) = 0},

let the objective function f : Rn → R and the constraint functions (g, h) : Rn →
Rl × Rm be continuously differentiable on a neighborhood of x?. If rg

(
J(g, h)(x?)

)
=

rg
(
J(g), J(h))(x?)

)
= m+ l, there exists a pair of Lagrange multipliers (Λ, µ) ∈ Rl×Rm

with
∇f(x?) + J(g)(x?)TΛ + J(h)(x?)Tµ = 0.

In this context, J denotes the Jacobian matrix.
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Proof. See [23].

Theorem 2.3. Given the optimization problem

Minimize f(x) on M = {x ∈ Rn : (g, h)(x) = 0}. (∗)

Let the functions f, h and g defined as before be twice continuously differentiable in
x? ∈M . If there exists a pair (Λ, µ) as in Theorem 2.2 with

vT

Hess(f(x?)) +
l∑

j=1
Λj Hess(gj) +

m∑
j=1

µj Hess(hj)

 v > 0

for all v ∈ ker (J(g, h)) (x?) \ {0}, then x? is an isolated local solution of (∗).

Proof. See [23].

Proof of Theorem 2.1. In order to determine Y such that tr(Y LY T ) under the given
constraints is minimal, we use the well-known method of Lagrange multipliers. Let us
consider the Lagrange function

L(Y,Λ, µ) = tr(Y LY T ) +
d∑

i,j=1
λij(ȳ

T
i Dȳj − δij) +

d∑
j=1

µj ȳ
T
j D1n×1,

with L : Rd×n × Rd×d × Rd → R, Λ = (λij)i,j=1,...d, µ ∈ Rd and ȳj , for j = 1, . . . d, the
transposed of the jth row of the data matrix Y . Since the condition ȳTi Dȳj = δij is
symmetric in i and j, the matrix Λ is symmetric.
For the moment we consider the auxiliary problem, where only the diagonal entries

of the constraint Y DY T = Id×d are kept, i.e. Λ is diagonal.
We can write a given vector η ∈ Rdn as a d× n matrix as follows:

Y = (ypq)p=1,...,d
q=1,...,n

=


η1 ηd+1 · · · ηd(n−1)+1
...

... . . . ...
ηd ηd2 · · · ηdn

 .
Using the Euclidean division we can find a unique decomposition m = d(q− 1) + p, with
1 ≤ p ≤ d and 1 ≤ q ≤ n. This provides a natural correspondence between η and Y :
ηm = ypq. For simplicity’s sake, we use the following vector notation for the involved
functions:

f : Rdn → R

η 7→ tr
(
Y LY T

)
gj : Rdn → R

η 7→
(
Y DY T

)
jj
− 1

hj : Rdn → R
η 7→ (Y D1n×1)j ,
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for j = 1, . . . , d.
To apply the necessary condition of Theorem 2.2 we have to show that the rank of

the Jacobian matrix J(g, h)(η?) of the constraints is 2d. With the notation introduced
above, the Jacobian matrix J(g, h)(η) is given by

J(g, h)(η)

=



2η1D11 0 2ηd+1D22 0 2ηd(n−1)+1Dnn 0
. . .

. . . · · ·
. . .

0 2ηdD11 0 2η2dD22 0 2ηdnDnn
D11 0 D22 0 Dnn 0

. . .
. . . · · ·

. . .
0 D11 0 D22 0 Dnn

.

From the constraint
gj(η

?) =
n∑
k=1

(η?d(k−1)+j)
2Dkk − 1 = 0

for a solution η? like in Theorem 2.2 it follows that there exists a k such that η?d(k−1)+j 6= 0,
for j = 1, . . . , d . These non-zero entries of J(g, h)(η?) are in the first d rows on different
positions and therefore the first d rows are linearly independent. From the structure
of J(g, h)(η?) and the fact that G is connected, i.e. D is positive definite, it follows
that for 1 ≤ j ≤ d only the jth and the (j + d)th row of J(g, h)(η?) can be linearly
dependent. Linear dependence would imply that for all j the entry η(k−1)d+j has the
same value for all k = 1, . . . , n, i.e. all data points are mapped on the same point. This
was excluded, and thus the row rank of J(g, h)(η?) is 2d. Hence, for each minimum η?

of f we get Lagrange multipliers (Λ, µ) such that

∇

f(η?) +
d∑
j=1

λjjgj(η
?) +

d∑
j=1

µjhj(η
?)

 = ∇L(η?,Λ, µ) = 0. (2.9)

In order to find the solutions η?, we differentiate the function L in direction of ηm = ypq,
with m = d(q − 1) + p using the fact that L is symmetric:

∂

∂ypq
L(Y,Λ, µ) = ∂

∂ypq
tr(Y LY T ) + ∂

∂ypq

d∑
i,j=1

λij(ȳ
T
i Dȳj − δij) + ∂

∂ypq

d∑
j=1

µj ȳ
T
j D1n×1

= ∂

∂ypq

d∑
j=1

n∑
k,l=1

yjkLklyjl + ∂

∂ypq

d∑
i,j=1

λij

(
n∑
k=1

yikyjkDkk − δij

)

+ ∂

∂ypq

d∑
j=1

µj

n∑
k=1

yjkDkk

=
n∑
k=1

Lkqypk +
n∑
l=1

Lqlypl +
d∑
i=1

λipyiqDqq +
d∑
j=1

λpjyjqDqq + µpDqq

= (Y L)pq + (Y LT )pq +
d∑
j=1

(λjp + λpj)yjqDqq + (µ11×nD)pq
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2.3. LE - Laplacian Eigenmaps

=
(
Y (L+ LT )

)
pq

+
(
(Λ + ΛT )Y D

)
pq

+ (µ11×nD)pq
= (2Y L)pq + (2ΛY D)pq + (µ11×nD)pq .

Hence, we get for the gradient of the Lagrange function L in the direction of Y :

∇Y L(Y,Λ, µ) = 2Y L+ 2ΛY D + µ11×nD.

Thus, solving (2.9) leads to solving

2Y L+ 2ΛY D + µ11×nD = 0, (2.10)

or column by column
2Lȳj + 2λjjDȳj + µjD1n×1 = 0.

Multiplying by 11×n gives

211×nLȳj + 2λjj11×nDȳj + µj11×nD1n×1 = 0. (2.11)

Due to the special form of L the column sums 11×nL of L (and also the row sums) are
zero. Thus, the first term vanishes for all j. The same holds for the middle term since
the constraint Y D1n×1 = 0 implies the orthogonality of the transposed rows ȳj of Y to
the vector 1n×1. Therefore, Equation (2.11) turns into

µj11×nD1n×1 = µj tr(D) = 0,

such that we can deduce µj = 0, for all j, because G is connected. Thus, solving
Equation (2.10) reduces to solving the generalized eigenvalue problem

Y L = ΛY D,

i.e. Y contains row by row generalized eigenvectors of L. Additionally, we observe that
the diagonal entries of Λ are d generalized non-zero eigenvalues of L. To conclude that
the zero eigenvalue is excluded, we use a graph theoretical statement, which says that
the dimension of the eigenspace Eig(0) to the generalized zero eigenvalue of L equals
the number of components of G. Therefore, the multiplicity of the generalized zero
eigenvalue is one and Eig(0) = span(1n×1). Hence, the generalized zero eigenvalue is
not contained in Λ, since the corresponding eigenvector is excluded by the constraints
of the minimization problem.
The eigenvectors ȳj fulfill in a natural way the orthogonality condition ȳjDȳ

T
j = 0.

Furthermore, we show that the solutions (η?,Λ, µ) are isolated local minima. Therefore,
we consider the Hessian matrices of f ,

∑d
j=1 gj and

∑d
j=1 hj :

Hess(f) = ∇2f = 2


L11Id×d L21Id×d · · · Ln1Id×d
L12Id×d L22Id×d Ln2Id×d

... . . . ...
L1nId×d L2nId×d · · · LnnId×d
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2. Dimensionality Reduction

Hess(
d∑
j=1

gj) = ∇2
d∑
j=1

gj = 2


λ1D11Id×d 0 · · · 0

0 λ2D22Id×d
...

... . . . 0
0 · · · 0 λnDnnId×d


Hess(

d∑
j=1

hj) = 0.

The matrix Hess(f) is positive semidefinite. This follows from Remark 9 because it has
the same eigenvalues as L just with d-fold multiplicity. The matrix Hess(

∑d
j=1 gj) is

positive definite because it is diagonal and the diagonal entries do not vanish. Thus, we
can deduce the positive definiteness of

Hess(L) = Hess(f) + Hess(
d∑
j=1

gj) + Hess(
d∑
j=1

hj).

Hence, we can apply the sufficient condition of Theorem 2.3 and deduce that η?

are isolated local minima if the corresponding Y contains row by row d generalized
eigenvectors of L.

The remaining task is now to find a global minimum among these. Using the constraint
Y DY T = Id×d for a local minimum

tr(Y LY T ) =
d∑
j=1

ȳTj Lȳj

=
d∑
j=1

λj ȳ
T
j Dȳj

=
d∑
j=1

λj

holds. And thus, the trace is minimized for Y containing the eigenvectors corresponding
to the d smallest non-zero eigenvalues.
Until here we have found a global solution for the auxiliary problem. Since Y

is composed of generalized eigenvectors, the additional constraints ȳTi Dȳj = 0, for
i 6= j are also fulfilled. Therefore, this solution is also a candidate for the initial
problem (2.8). The global minimum of the initial problem is taken on, because the set
{Y ∈ Rd×n|Y DY T = Id×d and Y D1n×1 = 0} is compact. Thus, each global minimum
of the auxiliary problem is also a global minimum of the initial problem.

Remark 10 ([35]). An alternative way to find a low dimensional embedding consists of
normalizing the Laplacian matrix by

L′ = D−
1
2LD−

1
2 =

[
Lkl√
DkkDll

]
1≤k,l≤n
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2.3. LE - Laplacian Eigenmaps

and calculating its eigenvectors by

L′ = UΓUT .

The eigenvectors corresponding to the d smallest non-zero eigenvalues will give us a
d-dimensional embedding of the data set.

Theorem 2.4. The eigenvalues Γ are the same as the eigenvalues of the generalized
eigenvalue problem of Theorem 2.1, i.e. the d-dimensional embedding is (up to a scaling)
the same as the solution obtained by Theorem 2.1.

Proof. Let fk, for k = 1, . . . , n, be the n generalized eigenvectors of L given by Lfk =
λkDfk. Then, for vk = D

1
2 fk,

L′vk = D−
1
2LD−

1
2D

1
2 fk = λkvk

holds. Since the diagonal entries of D are non-zero, the multiplication with D
1
2 causes

only a component-wise scaling of the eigenvectors.

Remark 11. There are different possibilities for the choice of the weights wij. These
weights will ensure that close points are mapped onto close points. Here, we mention
the two possibilities proposed in [3].

• Heat kernel. For t ∈ R

wij =

e−
‖xi−xj‖

2

t if e(i, j) ∈ E
0 otherwise

.

This choice is motivated by the analogy of the Laplacian matrix of a graph to the
Laplace-Beltrami operator on manifolds. More details can be found in [4].

• Simple weights.

wij =
{

1 if e(i, j) ∈ E
0 otherwise

.

This corresponds to the first option for t =∞.

Remark 12. The reconstruction mapping (or back transform) to the high-dimensional
space, is not as easy as it is in the case of PCA even in the case where the LE model is
fully respected.
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3. ICA - Independent Component Analysis

Independent component analysis (ICA) is a stochastical method for decomposing a
given data set into a set of statistically (i.e. mutually) independent components. This
statistical independence can be achieved by maximization of the non-Gaussianity or
by minimization of the mutual information. This idea is based on the Central Limit
Theorem which says that the distribution of a sum of independent random variables
tends to a Gaussian distribution.

ICA is frequently used for blind source separation (BSS). In this context we assume a
signal to be a linear mixture of different unknown source signals. The aim is to retrieve
these source signals without knowing anything about the mixing process.
The problem of ICA was first proposed and so named by Herault and Jutten in [26]

around 1986 because of its similarities to PCA. ICA is closely related to the so called
cocktail party effect. This effect describes the phenomenon of selective listening. Suppose
the conversation of two people being recorded with two different microphones then,
depending on its position, each microphone registers a signal. The weighted sums of
these two signals correspond to the two source signals. The problem of determining these
source signals and the weights leads to a set of linear equations with more unknown
variables than equations. In the above example we obtain two equations with six
unknown variables.

The core idea of ICA is to make some statistical assumptions on the source signals in
order to balance the disproportion of equations and unknowns. In concrete terms we
assume the signals to be statistically independent. This does not need to be completly
true in practice [30].

To give a mathematical formulation of the just explained situation, we follow [13] and
consider d weighted sums y1, . . . , yd of ρ source signals s1, . . . , sρ called independent
components

yi =
ρ∑
j=1

aijsj , d ≥ ρ.

The functions of time sj and yi can be interpreted as the realization of random variables
as we did in Section 2.2. This leads to the following linear statistical model:

Y = AS,

where Y and S are random vectors with values in Rd and Rρ respectively and A ∈ Rd×ρ.
The components of the vector S are maximizing a ‘contrast’ function. The contrast
of a vector is maximal if its components are statistically independent. Both Y and S
are assumed to have zero mean and a finite covariance. Thus, the ICA of a random
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3. ICA - Independent Component Analysis

v1

v2

(a) Components computed by PCA

s1

s2

(b) Components computed by ICA

Figure 3.1.: ICA recovers the structure of the data better than PCA,
because the independent components are not required to be orthogonal.

vector consists of searching a linear transformation such that the statistical dependence
between its components is minimized.
Given n realizations of the random vector Y we aim to estimate both, A and the

corresponding realizations of S. In the trivial case where A is known we simply compute
its pseudoinverse G = A−1 and thus

S = GY. (3.1)

But since A is unknown we aim to find another way to estimate G.
One method we already know is PCA. While PCA uses only statistics of second

order, i.e. the covariance matrix, ICA however uses statistics of all orders. As a
consequence PCA can only impose independence up to the second order and hence it
defines orthogonal directions. But in practice there are situations, where this is not
sufficient as can be seen in Figure 3.1. With ICA the data is not only uncorrelated but
also as statistically independent as possible. ICA can thus be seen as an extension of
PCA.

Definition 3.1 ([13]). The ICA of a random vector Y of length d with finite covariance
CY is a pair {A,Λ} of matrices such that

i) the covariance factorizes into

CY = AΛ2AT ,

where Λ is diagonal with real positive entries and A has full column rank ρ.

ii) the vector Y can be written as Y = AS, where S is a ρ× 1 random vector with
covariance Λ2 and whose components are ‘the most independent possible’, in the
sense of maximization of a given ‘contrast function’ that will be defined later on.

Remark 13. If we formulate the problem of PCA like in Definition 2.1, it becomes
obvious that ICA is an extension of PCA.
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3.1. On statistics and contrast functions

Remark 14. The decomposition of the covariance CY defined above is not unique.
Multiplying the components of the random vector with non-zero scalar factors or changing
the order of the components is not affecting the statistical independence of the components.
The Definition 3.1 characterizes in effect an equivalence class of decompositions rather
than a single one.

Against the background of computation equivalence classes are not easy to handle.
For this reason we intend to define a unique representative of each of these equivalence
classes. In order to do so we have to assume some additional constraints. These
constraints are arbitrary. We use the three constraints proposed in [13].

Definition 3.2. The constraints we use to guarantee the uniqueness of ICA are

i) the columns of A have unit norm,

ii) the entries of Λ are sorted in decreasing order,

iii) the entry of largest modulus in each column of A is positive.

Remark 15. The constraints in Definition 3.2 ensure also the uniqueness of PCA.

Now that we have formulated the problem of ICA, we will derive a way to solve it in
the next section. This solution is found by minimizing the mutual information, which
turns out to be a numerically efficient and accurate way of doing ICA.

3.1. On statistics and contrast functions

In Definition 3.1 the objective vector S is stated to be ‘the most independent possible’.
Since the contrast of a vector is a measure for its statistically independence this is
achieved by maximization of an appropriate contrast criterion. Before proposing such a
criterion (see [13]), we will give a heuristic motivation for a certain contrast function.
Thereafter, at the end of this section, we shall show that this function is indeed a
contrast.
But first we start with some notes on the standardization of random vectors and a

formal definition of contrast function.

Definition 3.3 ([13]). We denote by

i) Ed the space of random vectors or multivariate random variables with values in
Rd.

ii) Edr the Euclidean subspace of Ed spanned by variables with finite moments up to
order r, for any r ≥ 2, provided with the inner product 〈X ,Y〉 = E(X TY).

iii) Ẽd2 the subset of Ed2 of variables having an invertible covariance matrix.
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3. ICA - Independent Component Analysis

In the above definition the dr moments of order r of X are defined by

µX (r1, . . . , rd) = E

(
d∏
i=1
X rii

)
,

where r1 + r2 + · · · + rd = r. In general the observed data corresponds to a random
vector which lies in Ed2 (note that Edr ⊆ Ed2).

If we talk about standardization, we refer to transforming a random vector X ∈ Edr
into another, denoted by X̃ , that has a unit covariance. In particular if the covariance
CX of X is not invertible, the length of X and X̃ cannot be the same because CX has
at least one zero eigenvalue. In this case we have to project X on the range space of
CX . The projection and standardization can be done by PCA.

Without loss of generality we may assume in the following that the observed variable
belongs to Ẽd2. For a complete discussion, see [13].

Definition 3.4 ([13]). A contrast function is a mapping Ψ from the set of probability
densities {pX ,X ∈ Ed} to R

Ψ : {pX ,X ∈ Ed} −→ R

satisfying the following three requirements

i) Ψ(pPX ) = Ψ(pX ) for all permutations P , i.e. Ψ(pX ) does not change if the
components Xi are permuted.

ii) Ψ(p∆X ) = Ψ(pX ) for all invertible diagonal matrices ∆, i.e. Ψ is invariant by
‘scale’ change.

iii) If X has independent components, then Ψ(pAX ) ≤ Ψ(pX ) for all invertible matrices
A.

We see that the contrast of a random vector X is maximal if its components are
statistically independent. Therefore, we look for an appropriate contrast function. But
first we will briefly recall the definition of statistical independence.

Definition 3.5. The components of a random vector X = (X1, . . . ,Xd)
T with proba-

bility density function pX (x) are mutually or statistically independent if and only if for
the joint density function holds

pX (x) =
d∏
i=1

pXi(xi).

This definition provides a natural way of measuring the degree of statistical indepen-
dence of the components of a random vector by comparing the joint density pX and
the marginal densities pXi . In other words we search a distance measure δ for density
functions:

δ

(
pX ,

d∏
i=1

pXi

)
.
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3.1. On statistics and contrast functions

In this context, we do not always talk about proper distances since some are not sym-
metric as for example the Kullback-Leibler divergence. This divergence was introduced
by Kullback and Leibler [32] in 1951.

Definition 3.6. The Kullback-Leibler divergence is defined as

δ(pX , pZ) =
∫
pX (x) ln

(
pX (x)
pZ(x)

)
dx.

Lemma 3.1. The Kullback-Leibler divergence satisfies

δ(pX , pZ) ≥ 0,

where equality is obtained if and only if pX = pZ almost everywhere.

Proof. For the proof we use ln(x) ≤ x − 1, which follows from the concavity of the
logarithm, and the property of density functions

∫
p(x)dx = 1:∫

pX (x) ln
(
pX (x)
pZ(x)

)
dx = −

∫
pX (x) ln

(
pZ(x)
pX (x)

)
dx

≥
∫
pX (x)

(
1− pZ(x)

pX (x)

)
dx

=
(
−
∫
pZ(x)dx+

∫
pX (x)dx

)
= −1 + 1 = 0.

For the equality to hold we require
pZ
pX

= 1 almost everywhere,

such that ln(x) = x− 1, i.e. pZ(x) = pX (x).

As we have stated before we want X to be as statistically independent as possible.
From Definition 3.5 it is clear that choosing pX such that the distance between pX and∏d
i=1 pXi is minimized gives the requested result. This awareness leads us to take a

closer look at the specific Kullback-Leibler distance

I(pX ) = δ(pX ,
d∏
i=1

pXi) =
∫
pX (x) ln

(
pX (x)∏d

i=1 pXi(xi)

)
dx, (3.2)

which is called mutual information. The key problem in the analysis of the mutual
information of a random variable is the computation of the density pX itself. Since it is
usually unknown further consideration is needed. In this context a useful definition is
the one of differential entropy.

Definition 3.7. The differential entropy of a random variable X is defined as

S(pX ) = −
∫
pX (x) ln pX (x)dx.
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3. ICA - Independent Component Analysis

The differential entropy, also known as continuous entropy, is a measure of the average
information content of a random variable. While the well-known Shannon entropy is
only defined for discrete random variables, the differential entropy is a concept for
continuous ones. Hence it can be interpreted as an extension of the Shannon entropy
even though it has not all the nice properties, as for example, invariance under linear
invertible changes of coordinates. Nevertheless we would like to express (3.2) using
entropy terms. But first we recall that among all densities of Ẽd2 with given covariance
CX the multivariate Gaussian density given by

φX (x) = 1
(2π)d/2 det(CX )1/2 exp

(
−1

2x
TC−1
X x

)
,

has the largest entropy.

Lemma 3.2. For all X ,Y ∈ Ẽd2 with given covariance CX we have

S(φX ) ≥ S(pY),

with equality if and only if φX = pY almost everywhere. Furthermore it holds

S(φX ) = 1
2 (d+ d ln(2π) + ln(det(CX ))) .

Proof. From Lemma 3.1 we derive for pY and φX

0 ≤
∫
pY(x) ln

(
pY(x)
φX (x)

)
dx =

∫
pY(x) ln (pY(x)) dx−

∫
pY(x) ln(φX (x))dx,

which leads to

−
∫
pY(x) ln(pY(x))dx ≤ −

∫
pY(x) ln(φX (x))dx (3.3)

with equality if and only if pX = φX almost everywhere. Using the definition of the
density function of the multivariate Gaussian distribution the right-hand side turns into

−
∫
pY(x) ln(φX (x))dx = −

∫
pY(x)

(
ln
(

1
(2π)d/2 det(CX )1/2

)
− xTC−1

X x

2

)

= ln
(
(2π)d/2 det(CX )1/2

) ∫
pY(x)dx+ 1

2

∫
pY(x)xTC−1

X xdx

= 1
2 (d ln(2π) + ln(det(CX ))) + 1

2

∫
pY(x)

d∑
i,j=1

xi(C
−1
X )ijxjdx

= 1
2 (d ln(2π) + ln(det(CX ))) + 1

2

d∑
i,j=1

(C−1
X )ij

∫
pY(x)xixjdx

= 1
2 (d ln(2π) + ln(det(CX ))) + 1

2

d∑
i,j=1

(C−1
X )ij(CX )ji
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3.1. On statistics and contrast functions

= 1
2 (d ln(2π) + ln(det(CX ))) + 1

2

d∑
i=1

(C−1
X CX )ii

= 1
2 (d ln(2π) + ln(det(CX )) + d) .

For this computation we used
∫
pY(x)dx = 1 and

∫
pY(x)xixjdx = (CX )ij = (CX )ji.

Hence we get

−
∫
pY(x) ln(φX (x))dx = 1

2 (d ln(2π) + ln(det(CX )) + d) . (3.4)

It is noteworthy, that the expression on the right-hand side does not depend on pY and
thus it follows S(φX ) = 1

2 (d ln(2π) + ln(det(CX )) + d). From (3.3) and (3.4) we deduce

−
∫
pY(x) ln(pY(x))dx ≤ 1

2 (d ln(2π) + ln(det(CX )) + d)

with equality if and only if pX = φX almost everywhere.

Given this property one can define a distance for density functions to the Gaussian
density, but this is not a distance in the strict sense.

Definition 3.8. For densities pX ∈ Ẽd2 we define the negentropy as

J(pX ) = S(φX )− S(pX ),

with φX being the Gaussian density with the same variance and mean as pX .

Theorem 3.1. The negentropy J : Ẽd2 → R has the following properties:

i) J(pX ) ≥ 0 for all X ∈ Ẽd2.

ii) J(pAX ) = J(pX ) for all invertible matrices A, i.e. the negentropy is invariant
under linear invertible changes of coordinates.

iii) J(pX ) = 0 if and only if pX = φX almost everywhere.

Proof. Properties i) and iii) follow from Lemma 3.2. To show ii) we consider the entropy
of an arbitrary density qAX . From the transformation formula for density functions
follows:

S(qAX ) = −
∫
qAX (x) ln (qAX (x)) dx

= −
∫
qX (A−1x)|det(A−1)| ln

(
qX (A−1x)|det(A−1)|

)
dx

= −
∫
qX (y) ln

(
qX (y)|det(A−1)|

)
dy

= −
∫
qX (y) ln (qX (y)) dy +

∫
qX (y) ln (| det(A)|) dy

= S(qX )− ln (| det(A)|) .
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3. ICA - Independent Component Analysis

Hence we get for the negentropy of pAX

J(pAX ) = S(φAX )− S(pAX )
= S(φX )− ln (|det(A)|)− S(pX ) + ln (|det(A)|)
= J(pX ).

Theorem 3.2. For the mutual information I the following

I(pX ) = J(pX )−
d∑
i=1

J(pXi) + 1
2 ln

(∏d
i=1(CX )ii
det(CX )

)
(3.5)

holds.

Before we start with the proof we recall the definition of marginal density.

Definition 3.9. The ith marginal density function pXi of a random variable X =
(X1, . . . ,Xd)

T is the probability density function associated to variable Xi. It is related
to pX as follows

pXi(xi) =
∫
pX (x)dx1x2 . . . xi−1xi+1 . . . xd.

Proof of Theorem 3.2. [13]. Using Fubini’s Theorem we deduce from Definition 3.9

−
∫
pX (x) ln

(
pXi(xi)

)
dx = −

∫
ln
(
pXi(xi)

) ∫
pX (x)dx1x2 . . . xi−1xi+1 . . . xddxi

= −
∫

ln
(
pXi(xi)

)
pXi(xi)dxi

= S(pXi),

for all i. Thus,

−S(pX ) +
d∑
i=1

S(pXi) =
∫
pX (x) ln (pX (x)) dx−

d∑
i=1

∫
pX (x) ln

(
pXi(xi)

)
dxi

=
∫
pX (x) ln (pX (x)) dx−

∫
pX (x) ln

(
d∏
i=1

pXi(xi)
)

dx

=
∫
pX (x) ln

(
pX (x)∏d

i=1 pXi(xi)

)
dx

= I(pX )

holds and therefore using Lemma 3.2 it follows

J(pX )−
d∑
i=1

J(pXi) = S(φX )− S(pX )−
d∑
i=1

S(φXi) +
d∑
i=1

S(pXi)
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3.1. On statistics and contrast functions

= I(pX ) + 1
2 (d+ d ln(2π) + ln det(CX ))

− 1
2

d∑
i=1

(1 + ln(2π) + ln((CX )ii))

= I(pX )− 1
2 ln

(∏d
i=1(CX )ii
det(CX )

)
.

Solving this equation for I(pX ) leads to the required result.

Lemma 3.3. If CX is invertible, the last term of (3.5), namely 1
2 ln

(∏d

i=1(CX )ii
det(CX )

)
, is

zero if and only if CX is diagonal.

Proof. It is obvious that the last term of (3.5) is zero if and only if det(CX ) =
∏d
i=1(CX )ii.

‘⇒’: If det(CX ) =
∏d
i=1(CX )ii holds, we replace CX by its Cholesky decomposition

CX = LLT , where L is a lower triangular matrix. Then the equation turns into

d∏
i=1

L2
ii = det(L)2 = det(CX ) =

d∏
i=1

(CX )ii =
d∏
i=1

(
L2
ii +

i−1∑
k=1

L2
ik

)
.

But this implies either
i−1∑
k=1

L2
ik = 0, for all i

or

L2
ii +

i−1∑
k=1

L2
ik = 0 for at least one k,

which results in either all Lik being zero or L having some zero-row. Since CX is
invertible, only the first is possible and thus CX is diagonal.
‘⇐’: If CX is diagonal, then it follows immediately that det(CX ) =

∏d
i=1(CX )ii holds.

Now we are able to specify a contrast criterion.

Theorem 3.3 ([13]). The function

Ψ(pX ) = −I(pX̃ )

is a contrast function over Ed2.

Remark 16. Note that the definition of Ψ includes the standardization of the random
vector X . Therefore, the third term of the contrast function (see Equation (3.5)) cancels
out due to Lemma 3.3.

Proof of Theorem 3.3. We have to verify the three requirements of Definition 3.4. Since
i) and ii) consist of special linear invertible changes of coordinates, we only have to
prove that the third term of the right-hand side of (3.5) does not change under this
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3. ICA - Independent Component Analysis

kind of transformations. But this term cancels because of the standardization in the
definition of Ψ.
To prove iii) let us suppose X to have independent components, i.e. Ψ(pX ) = 0. From
the definition of Ψ it follows that Ψ(pAX ) ≤ 0 and thus Ψ(pAX ) ≤ Ψ(pX ).

If we return to the initial problem (3.1), we have to minimize the mutual information
I(pS̃) = I(p

G̃Y) (or to maximize −I). It is convenient to do this in two steps. First we
apply a transformation T in order to standardize Y . The second step consists in finding
an orthonormal transform Q that minimizes the second term of (3.5) while the other
two remain constant. Here orthonormal refers to the orthonormality of the rows of Q.
Then G̃Y factorizes in G̃Y = QTY.

What we have figured out so far is a way to write the mutual information I such
that it does not depend directly on the unknown densities pS̃ and pS̃i but rather on
the distances J(pS̃) and J(pS̃i) of these densities to the Gaussian density (see (3.5)).
The benefits of this results may not be obvious but they become clear if we recapitulate
the aim of this chapter: For a given data set Y we are looking for a S with almost
independent components. As we have seen before this can be achieved by minimizing
the distance between pS̃ and its marginal densities, which is equivalent to minimizing
I(pS̃). This minimum is zero and it can be reached if pS̃ = φS̃ . In this case also the
negentropy J reaches its minimum zero. Therefore, we would like to approximate the
negentropy about zero in order to approximate I. This leads to expanding the unknown
density pS̃ in the neighborhood of φS̃ . This expansion is the core aspect of the next
section.

3.2. Edgeworth expansion
Assume for simplicity that A and G are quadratic, i.e. ρ = d. For our application this
assumption will be no restriction, since we consider dimensionality reduced data sets.
For a given standardized random vector Ỹ = TY we are looking for an orthonormal
matrix Q maximizing the contrast function

Ψ(pS̃) = −I(pQỸ), where S̃ = QỸ, (3.6)

i.e. Q is minimizing the mutual information I. The factorization of S̃ follows from

S̃ = ∆−1S = ∆−1GY = ∆−1GT−1TY = ∆−1GT−1Ỹ = QỸ.

The orthonormality of Q = ∆−1GT−1 follows with Equation (2.2) from:

Iρ = CS̃ = CQỸ = QCỸQ
T = QQT ,

where Iρ is the unit matrix. As we have stated before, the densities pỸ and pS̃ are
unknown. For this reason the maximization task cannot be solved directly. Since
cumulants are more easily accessible, we aim to express the contrast function as a
function of those.
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The contrast function from Theorem 3.3 consists of three main terms: the negentropy
of a standardized random vector, the marginal negentropy of each component of this
random vector and an additional term involving the covariance matrix. As the random
vector is standardized, the last term cancels and thus we only have to consider the two
remaining ones.
First we discuss the expression of negentropy in the marginal case, i.e. the scalar

case. The expression relies basically on the Edgeworth expansion of a density about its
best Gaussian approximate (in our case with zero-mean and unit variance).

Definition 3.10. The Edgeworth expansion of a probability density function pX of a
random variable X having zero-mean and unit variance is given by

pX (x)
φX (x) = 1

+ 1
3!κ3h3(x)

+ 1
4!κ4h4(x) + 10

6! κ
2
3h6(x)

+ 1
5!κ5h5(x) + 35

7! κ3κ4h7(x) + 280
9! κ

3
3h9(x)

+ 1
6!κ6h6(x) + 56

8! κ3κ5h8(x) + 35
8! κ

2
4h8(x) + 2100

10! κ
2
3κ4h10(x) + 15400

12! κ4
3h12(x)

+ o(m−2),

where κi denotes the cumulant of order i of X and hi(x) is the Hermit polynomial of
degree i (see [13]).

Remark 17. From the Central Limit Theorem it follows that for a random variable X ,
being a sum of m independent random variables with finite cumulants, the cumulant κi
is of order m(2−i)/2. For a derivation of the Edgeworth expansion see [31].

Since Ỹ is the observed variable, we have so far no information about S̃ and thus we
cannot approximate the cumulants κi but only the cumulants γi of Ỹ. But cumulants
satisfy a certain multilinearity property which allows us to compute the κi using (3.6),
see [13].

Theorem 3.4 ([13]). For a standardized scalar random variable X̃ , the negentropy can
be expanded as

J(pX̃ ) = 1
12κ

2
3 + 1

48κ
2
4 + 7

48κ
4
3 −

1
8κ

2
3κ4 + o(m−2).

Proof. We will only discuss the idea of the proof because it ends up in solving a couple
of ordinary integrals.
From the power series expansion of ln(1 + r) it follows

(1 + r) ln(1 + r) = r + r2

2 −
r3

6 + r4

12 + o(r4). (3.7)
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From Definition 3.10 we deduce

pX̃ (x) = φX̃ (x) (1 + r(x))

and from (3.4)
∫
φX̃ (x)(1 + r(x)) ln

(
φX̃ (x)

)
dx = −S(φX̃ ). Using these equalities the

negentropy can be written as

J(pX̃ ) =
∫
φX̃ (x) (1 + r(x)) ln(1 + r(x))dx

and we can insert (3.7) and the definition of r(x). This leads to a sum of integrals which
can be solved by using some properties of the Hermite polynomials. For more details
see [13].

Theorem 3.4 provides an approximation of the marginal negentropies of S̃. Now we
can address the modification of J(pS̃). From Theorem 3.1 we know, that the negentropy
is invariant under linear invertible changes of coordinates. Hence J(pS̃) = J(pỸ) and
thus

I(pS̃) ≈ J(pỸ)− 1
48

d∑
i=1

4κ(i)2
3 + κ(i)2

4 + 7κ(i)4
3 − 6κ(i)2

3κ(i)4,

where κ(i)j denotes the jth cumulant of S̃i. Since J(pỸ) does not depend on Q, the
next theorem follows immediately.

Theorem 3.5. Maximizing (3.6) is equivalent to maximizing

ψ(Q) =
d∑
i=1

4κ(i)2
3 + κ(i)2

4 + 7κ(i)4
3 − 6κ(i)2

3κ(i)4, (3.8)

where κ(i)j denotes the jth cumulant of S̃i.

The maximization of ψ is not a trivial task as the cumulants κ(i)j depend on Q.
Even if we have shown that the mutual information I is a contrast function this does
not imply that ψ is so, because ψ is only an approximation of I. If the cumulants κ(i)3
are large enough it is sufficient to consider the expansion only up to order O(m−3/2),
which yields ψ(Q) = 4

∑d
i=1 κ(i)2

3. And if κ(i)3 = 0 for all i Equation (3.8) reduces to
ψ(Q) =

∑d
i=1 κ(i)2

4. It can be shown that in these two special cases ψ(Q) is a contrast
function. For a proof see [13] or [12]. In the general case where the κ(i)3 are neither
all null nor large, this functions can also be used, but they are not approximating
the contrast function from Theorem 3.3 any more. However, there are other criteria
discussed in [9].

3.3. Algorithm
So far we have provided a guideline for solving the initial problem (3.1) of this section.
For the purpose of applying these steps to a measured data set we seek an efficient
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algorithm. Even though in [13] an algorithm is discussed, we use the Joint Approximate
Diagonalization of Eigenmatrices (JADE) proposed by Cardoso in [9]. Cardoso and
Souloumiac developed this algorithm in 1993 and it has been improved several times by
the authors. A MATLAB implementation of JADE is available at [6].

The general proceeding of JADE is similar to what we have described in the previous
sections. Recall that we are searching a matrix A such that Y = AS. This can be done
following the steps below [9].

1. Initialize: Standardization of the data set Ỹ = TY .

2. Form statistics: Estimation of the cumulants of the components of Ỹ .

3. Optimize an orthogonal contrast: Estimation of Q.

4. Separate: Estimate Ã as the inverse of G̃ = QT and/or S̃ = QTY .

The output of the JADE algorithm is a data set S̃ with unit covariance. This is a
consequence from a different unity condition which leads to the choice of a different
representative. To get the ICA we defined in Definition 3.1 and 3.2, we need to scale
and permute the columns of Ã.
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In the previous section we have seen that ICA is based on the assumption that the
number of sources is known and that the source signals are statistically independent. In
practice this is not always the case and therefore the extraction of sources of a data
set Y might be inaccurate. As a consequence it could happen that we detect more
independent components as the true number of sources. In this case, two or more of the
separated components pertain to the same source. Nevertheless there is a way to use
the separation properties of ICA: Independent Subspace Analysis (ISA) takes advantage
of this quality of ICA by extending it to a method which extracts maximally contrasting
sources. These sources are combinations of the independent components obtained from
a single channel mixture (see [10]). In blind signal separation ISA has been proposed
from Casey and Westner [10] in 2000 and it is an upgrade of ICA which partitions the
different independent components into groups, each of which is spanning a subspace.
This procedure avoids the above explained problem of extracting more sources than
there are. There has been previous work on ISA in the context of image processing by
Hyvärinen and Hoyer [28].

Remark 18. Usually ICA based separation requires that the given data set contains at
least as many observations as there are unknown components or sources (d ≥ ρ). In
the field of blind signal separation (BSS) this leads to the constraint that there need to
be at least as many sensors recording the signal as unknown sources. But in practice
there are often fewer sensors or even only one, such that this constraint is very limiting.
Therefore, the idea of ISA is to extend ICA not only in the sense of grouping the
components into multi-component subspaces but also in the sense of the ability to handle
single sensor problems. This is done considering the spectrogram of a signal (see Remark
5) instead of the signal itself. Applying the subspace analysis explained below leads to
a decomposition of the spectrogram into spectrograms of the unknown sources. These
sources can be obtained by back transforming each spectrogram. In this section we will
only discuss the decomposition step. For the remaining steps see Chapter 7.

The general proceeding in ISA is to first extract the independent components of
a given data set Y using ICA. In a second step these components are grouped (or
partitioned) into independent subspaces, each one corresponding to a source. Finally
the sources are reconstructed from these multi-component subspaces. In the following
we aim to discuss first the third and then the second step of this method.
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4.1. Reconstruction
For a given data set Y = (yT1 , . . . , y

T
d )T ∈ Rd×n we suppose as before each row yi ∈ R1×n

to be the weighted sum of ρ independent components zj ∈ Rn×1:

yTi =
ρ∑
j=1

ajizj

or
yTi = Zai, (4.1)

where Z = (z1, . . . , zρ) and A = (a1, . . . , ad) = (aji)j=1,...,ρ,i=1,...,d. The unknown
matrices Z and A can be estimated with ICA. Due to the properties of ICA, Z has unit
covariance and thus Z is an orthonormal basis of a ρ-dimensional subspace of the Rn.
In contrast to ICA at this point ISA does not assume the zj to be the sources of the
mixed signal.

The core idea of ISA is that each source is a linear combination of the zj . Assume that
we have c unknown sources and that each zj corresponds to only one of the different
sources such that the ρ-dimensional subspace U spanned by the zj is the internal direct
sum of subspaces Uk associated to the sources. Hence we get a partition of Z

Z =
c⋃
j=1

Zk, Zk ∩ Zj = ∅ for all 1 ≤ k, j ≤ c, k 6= j.

Each of the Zk = (z(k)1, z(k)2, . . . , z(k)ρk) spans an independent subspace Uk =
span(z(k)1, z(k)2, . . . , z(k)ρk) and thus

U = ⊕ck=1Uk. (4.2)

Theorem 4.1. Let Z be a set of orthonormal vectors of Rn which is partitioned into
subsets Zk, k = 1, . . . , c, then a given data set Y ∈ Rd×n with yTi ∈ span(Z) can
be decomposed into separate data sets Yk formed from the subspaces span(Zk). This
decomposition can be written as

Y T =
c∑

k=1
Y T
k =

c∑
k=1

ZkAk,

where Ak = ZTk Y
T is the matrix of coefficients.

Proof. From (4.1) follows yTi ∈ U = span(Z) and thus from (4.2) there exist coefficient
vectors a(k)i ∈ Rρk such that

yTi =
c∑

k=1
Zka(k)i.

Extending this consideration to the whole data set Y yields

Y T =
c∑

k=1
ZkAk, (4.3)
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where Ak = (a(k)1, . . . , a(k)d) ∈ Rρk×d.
The coefficient matrices Ak can be computed by orthogonal projection of the data set

Y T on the kth subspace. This projection is given by multiplying 4.3 from the left with
ZTk as

Ak = ZTk Y
T .

From Theorem 4.1 we have learned that, given the subspaces spanned by Zk, we can
decompose the data set Y T into a sum where each subspace appears as a weighted sum
of its basis vectors.

Remark 19. From Theorem 4.1 we get a decomposition of each data point yTi =∑c
k=1 Zka(k)k into parts each corresponding to a source.

In this section we analyzed how to reconstruct the data sets Yk from Y , where Yk
represents the kth source, provided an adequate partition of Z has been found. In the
next section we present a method to compute such a partition.

4.2. Grouping

The main difficulty in the concept of ISA is to identify the components zj that belong
to the same multi-component subspace. This can be done by some type of grouping.
Here, we like to discuss the grouping method introduced by Casey and Westner in [10].
This method is based on calculating the similarities of the independent components zj
and sorting them by using their pairwise dissimilarities. To understand this concept
we return once more to the world of stochastics. In the next section we will define a
similarity measure which is the basis of the clustering done in the last section.

4.2.1. Similarity measure

A similarity measure quantifies the similarity of two objects. If we consider for example
the Euclidean distance between two points, we state that the smaller the distance the
more similar the points are in terms of location. In Section 3.1 we have seen that each
zj can be interpreted as n realizations of a random variable Zj . If we search a similarity
measure for the zj it seems reasonable to take a distance measure for density functions
in order to compare pZi and pZj . As an essential property of this measure we require
its symmetry. In Definition 3.6 we introduced the Kullback-Leibler divergence. This
distance measure is not symmetric so that it has to be modified.
It may seem absurd to use the dissimilarities of the zj as they are computed to

be as independent as possible. However, in practice they are usually not completely
independent since unit covariance does not imply this property. Therefore, there are
still similarities to detect.
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Definition 4.1. The symmetric Kullback-Leibler divergence of two probability density
functions pX and pY is defined as

δsym(pX , pY) = 1
2

∫
pX (x) ln

(
pX (x)
pY(x)

)
dx+ 1

2

∫
pY(x) ln

(
pY(x)
pX (x)

)
dx.

Lemma 4.1. The symmetric Kullback-Leibler divergence is symmetric and positive
definite if the integrals exist.

Remark 20. It turns out that the symmetric Kullback-Leibler divergence is not a proper
distance measure since the triangular inequality does not hold. As a counterexample
consider the densities pX (x) = 2x, pY(x) = 1 and pZ(x) = 2 − 2x for x ∈ [0, 1] and
pX (x) = pY(x) = pZ(x) = 0 for x /∈ [0, 1]. Then integration leads to δsym(pX , pY) =
δsym(pY , pZ) = 1

4 and δsym(pX , pZ) = 1.

Proof of Lemma 4.1. We observe that δsym can be written as the weighted sum of
Kullback-Leibler divergences:

δsym(pX , pY) = 1
2 (δ(pX , pY) + δ(pY , pX )) (4.4)

Using (4.4) the positivity of δsym is a direct consequence of Lemma 3.1. And since
δsym(pX , pY) = 0 holds if and only if both, δ(pX , pY) and δ(pY , pX ), are zero we have
positive definiteness. The symmetry follows also directly from (4.4).

It is important to keep in mind, that the probability densities of the Zj are unknown
but we do, however, have the data zj from which we can estimate the underlying
densities. Recall that this can be done by the Edgeworth expansion (see Definition
3.10):

pX (x) = φX (x)
(
1 + 1

3!κ3h3(x)

+ 1
4!κ4h4(x) + 10

6! κ
2
3h6(x)

+ 1
5!κ5h5(x) + 35

7! κ3κ4h7(x) + 280
9! κ

3
3h9(x)

+ 1
6!κ6h6(x) + 56

8! κ3κ5h8(x) + 35
8! κ

2
4h8(x)

+ 2100
10! κ

2
3κ4h10(x) + 15400

12! κ4
3h12(x)

+ o(m−2)
)

Using this expansion the density pZj is written as a function of the cumulants of
Zj . These cumulants can be expressed using the central moments of Zj . In our case
the central moments are equal to the general moments m(j)k because we assume the
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variables to have zero mean. The moments m(j)k of the random variable Zj can be
estimated using the realizations of the variable:

m(j)k = 1
n

n∑
i=1

zkj,i,

where zj,i denotes the ith component of zj .

Remark 21. The first order cumulant of a random vector is its mean and the second
its variance.

The kth order cumulant can be expressed by a term involving the cumulants of order
1 to k − 1 and the moments of order 1 to k:

κ(j)k = m(j)k −
k−1∑
i=1

(
k − 1
i− 1

)
κ(j)im(j)k−i.

For the cumulants κ(j)k of Zj up to order k this yields

κ(j)1 = m(j)1

κ(j)2 = m(j)2

κ(j)3 = m(j)3

κ(j)4 = m(j)4 − 3m(j)2
2

κ(j)5 = m(j)5 − 10m(j)3m(j)2

κ(j)6 = m(j)6 − 15m(j)4m(j)2 − 10m(j)2
3 + 30m(j)3

2.

See for example [31] for detailed information. So far we have seen how the zj can be
used to calculate probability densities which can be compared using the symmetric
Kullback-Leibler divergence. Other similarity measures for probability density functions
are known (see [11], [37]), but since we use the standard Kullback-Leibler divergence
for ICA, it is reasonable to use a similar measure in this situation. In the next section
we will see how to use this similarity measure to classify the orthogonal vectors zj .

4.2.2. Clustering
The similarity of the vectors zj will be represented in a so called ixegram, the independent
component cross-entropy matrix (see [10]). This self-similarity matrix contains the
pairwise dissimilarities of the vectors zj .

Definition 4.2. The ixegram of a set of vectors zj ∈ Rn is the matrix

D =
(
Dij

)
i,j=1,...,ρ =


δsym(pZ1

, pZ1
) δsym(pZ1

, pZ2
) · · · δsym(pZ1

, pZρ)
δsym(pZ2

, pZ1
) δsym(pZ2

, pZ2
) · · · δsym(pZ2

, pZρ)
...

... . . . ...
δsym(pZρ , pZ1

) δsym(pZρ , pZ2
) · · · δsym(pZρ , pZρ)

 ∈ Rρ×ρ.

47



4. ISA - Independent Subspace Analysis

Lemma 4.2. The ixegram D is symmetric and has non-negative entries. Its diagonal
entries are all zero.

Proof. The properties are all a direct consequence of Lemma 4.1.

The task is to identify c groups of vectors by means of the ixegram without knowing
how many vectors belong to each group. The idea is to assign those vectors to the same
group which are similar to each other in such a way that vectors from different groups
are as dissimilar as possible. This can be done by a pairwise clustering algorithm.

Clustering is the segmentation of a set of objects into subsets called clusters such that
objects in the same cluster are similar. There are several pairwise clustering methods
(see [40] and [41]). The one we use is the same as Casey and Westner proposed by
Hofmann and Buhmann [27] in 1997. This method estimates an assignment matrix
M ∈ Rρ×c

M =
(
Mjk

)
j=1,...,ρ,k=1,...,c =


P (z1|C1) P (z1|C2) · · · P (z1|Cc)
P (z2|C1) P (z2|C2) · · · P (z2|Cc)

...
... . . . ...

P (zρ|C1) P (zρ|C2) · · · P (zρ|Cc)

 ,
where P (zj |Ck) is the probability of assigning vector zj to cluster (or group) Ck. The
sum of each row of the matrix M should be one because it represents the probability
that a certain zj is assigned to any cluster. This property leads to ρ constraints.

The matrix M is computed so that it minimizes the following cost function proposed
in [27]:

h(M,D) = 1
2

ρ∑
i=1

ρ∑
j=1

Dij

ρ

(
c∑

k=1

MikMjk

pk
− 1

)
, (4.5)

where pk = 1
ρ

∑ρ
l=1Mlk is the probability with which any component is assigned to

cluster Ck. This normalization is necessary to compensate the different numbers of zj
in the different clusters. One can see if zi and zj are not very similar, they contribute a
high cost if they are assigned to the same cluster.

Theorem 4.2. Minimizing the cost function h(M,D) is equivalent to minimizing

H(M,D) =
c∑

k=1

1∑ρ
l=1Mlk

ρ∑
i=1

ρ∑
j=i+1

MikMjkDij .

Proof. Resorting to (4.5) leads to

h(M,D) = 1
2

ρ∑
i=1

ρ∑
j=1

Dij

ρ

(
c∑

k=1

MikMjk

pk
− 1

)

= 1
2ρ

c∑
k=1

1
pk

ρ∑
i=1

ρ∑
j=1

MikMjkDij −
1
2ρ

ρ∑
i=1

ρ∑
j=1

Dij .
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The minimizer M does not depend on scaling changes, as the multiplication with 1
ρ ,

or the addition of constant terms, as 1
2ρ
∑ρ
i=1

∑ρ
j=1Dij . Thus, the minimization of

h(M,D) is equivalent to minimizing

H(M,D) = 1
2

c∑
k=1

1
pk

ρ∑
i=1

ρ∑
j=1

MikMjkDij . (4.6)

The term MikMjkDij can be interpreted as the entry (i, j) of a matrix A. The matrix
A is symmetric since D is symmetric and has diagonal zero entries due to the fact that
D has so. Therefore, the sum of all entries of A can be split into two sums of the same
value by summing only the upper triangular entries and the lower triangular entries:

ρ∑
i=1

ρ∑
j=1

MikMjkDij =
ρ∑
i=1

i−1∑
j=1

MikMjkDij +
ρ∑
i=1

ρ∑
j=i+1

MikMjkDij

= 2
ρ∑
i=1

ρ∑
j=i+1

MikMjkDij .

In combination with (4.6) this yields

H(M,D) =
c∑

k=1

1
pk

ρ∑
i=1

ρ∑
j=i+1

MikMjkDij ,

where pk = 1
ρ

∑ρ
l=1Mlk.

Of course the computational cost depends on the number of independent components,
i.e. on the dimension ρ. Therefore, it is essential to keep this number low. So even
if increasing the number of components would cause a more accurate separation this
seems to be not a good idea.
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Applications
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5. Outline
Many audio related applications take advantage of the ability to separate sources from
a mixture without a prior knowledge about the mixing process. Thus, the analysis
and separation of audio signals into their source components is an important tool
for the extraction of metadata from audio data as for example separating musical
instruments from a polyphonic ensemble, music restoration or extracting speech from a
noisy background. Data obtained from a single-channel recording are often characterized
by their high dimensionality. Therefore, the application of dimensionality reduction
tools in this field is justified.
In this part we discuss how exactly dimensionality reduction methods can be used

in Independent Subspace Analysis (ISA) for signal detection. In this context, signal
detection is about identifying the time locations at which a certain source signal is
active. In the field of signal processing, this is an important aspect, since it provides
relevant information about a mixture of signals. This information can be used for
further analysis as for example signal separation. In fact, provided the time locations
where a certain source is active are known, separation algorithms could concentrate on
these regions and perform the source extraction with higher resolution, but this is not
the objective of this work.
The objective is to evaluate the usage of two dimensionality reduction methods

(PCA and LE) in signal detection and separation algorithms. The combination of
these methods is not a new concept (see [18], [50]). But to improve these strategies, a
better mathematical understanding of these procedures supported by empirical tests is
needed. In particular, we focus on the signal detection problem in a complex mixture of
transitory acoustic sounds.

Assume a given band-limited signal f ∈ L2(R) to be the sum of c unknown source
signals fi:

f(t) =
c∑
i=1

fi(t).

In the following we will consider the discretized problem, obtained by sampling the
original signal f respecting the Nyquist-Shannon Sampling Theorem 1.2. This leads to
a discrete signal s = (f(tl))

N
l=1, which we assume to be the sum of c unknown discrete

source signals si ∈ `
∞(ZN ) = RN :

s =
c∑
i=1

si.

The source signals si are not necessary active during all time, i.e. there might exist tl
such that si,l = fi(tl) = 0 for some i ∈ Zc. The knowledge about the time steps tl when
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this happens is a crucial preprocessing step in order to extract the unknown source
signals si. In the following, we describe how this detection can be done combining ISA
and dimensionality reduction techniques.
In the previous chapters we have seen that ICA (and thus ISA) needs a data set

X ∈ Rd×n of different observations as an input in order to estimate ρ ≤ d sources of
length n. This means that we need at least as many observations as sources. In practice,
this is usually not the case. In fact, in many cases we have fewer sensors than sources
and it is very common to consider even single sensor problems.

In this context, the observed signal s is only a single-channel recording and we cannot
directly apply ICA to the measured data. Therefore, in a further preprocessing step,
by multiplication with a window function we split the observed signal s into vectors
sk, 1 ≤ k ≤ n of length D, such that we get a data set Xs = {sk}k=1,...,n ⊂ RD.
This data set Xs lies in Ms, a low-dimensional space or manifold embedded in the
high-dimensional space RD. One of the reasons justifying this assumption is that all
data points are segments from the same signal and thus they are similar.
Since each source can be characterized by the frequencies it is containing, we need

some information about the frequencies occurring in the signal at each time step in
order to detect the time steps where a source signal is active. As the Fourier transform
provides only information about the frequencies of a signal during its whole time period,
we have to consider the spectrogram of the signal s. Therefore, we perform a D-points
discrete Fourier transform on each of the segments sk ∈ Xs of the windowed signal.
Each of this Fourier transforms is assumed to represent the frequency range of s at one
time step. This procedure can be written as X = FD(Xs) ∈ RD×n, i.e. we switch from
time-amplitude space to time-frequency space by Fourier analysis. Effectively, we apply
the short-time Fourier transform on the signal s

X = Fϕ,Ds,

in order to compute the spectrogram. This step is necessary to make the hidden
information in the signal accessible, so that we can use it for the detection. The
manifold Ms is also transformed by FD into another manifold M = FD(Ms). The
value D depends on the frequency range of the signal which is usually large.

To determine te independent components ofX, we use the JADE algorithm introduced
in Section 3.3. This algorithm computes a mixing matrix A, which would be of size
D×D. Since D is huge, performing an ICA is computationally very expensive. Thus, we
can take advantage of the assumption that the data lies on a low-dimensional manifold
and apply a dimensionality reduction method. This step reduces the dimensionality of
the data from D to d.

At this point the estimation of the intrinsic dimensionality of the data set is a crucial
task, whose influence is a matter for future studies. However there are different strategies
available for estimating this dimensionality (see [36], [39]).

After the reduction of the dimensionality and the computation of the d independent
components, we perform a grouping in which each component is assigned to one of the
c source signals. It is important to know how many source signals we look for in order
to determine c, the number of clusters.
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Figure 5.1.: General proceeding of ISA with dimensionality reduction.

By means of the components the time locations where the different sources are active
are estimable. A complete separation and computation of the source signals is only
possible if a back transform for the dimensionality reduced data is known. This is
not always provided since the underlying models are often not fully respected or the
methods are highly non-linear. A schematic overview of the above explained procedure
is shown in Figure 5.1 and for a better understanding of the involved mathematical
objects see the following diagram.

s =
∑

si ⊂ RN

Xs ⊂Ms⊂ RD

X = FD(Xs) ⊂ M ⊂ RD

Y = P (X) ⊂ Ω ⊂ Rd

{s̄i} ⊂ Rn

{si} ⊂ Rn

windowing

FFT

dimensionality reduction P

ICA

grouping
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6. Independent Subspace Analysis:
An illustrative example

Now we discuss an illustrative example in order to elucidate the above explained
algorithm and to compare the different dimensionality reduction methods PCA and
LE. In the next sections we present the results, obtained by the different steps of a
MATLAB implementation of the algorithm, following roughly Part I. The signal s is
the mixture of two transitory acoustic sounds

s = s1 + s2,

where s1 is the signal of a cymbal and s2 the signal of castanets (see Figure 6.1) both of
length N = 100000 samples. In this setting we know the source signals of s so that we
are able to compare the detection results with the real sources.
The signal of the castanets s2 is active only at few time steps beside some transient

effects (Figure 6.1c). Regarding the mixed signal s (Figure 6.1e) we observe that the
signal s2 is quite difficult to distinguish from the mixture s. This illustrates once more,
why detecting the time locations where s2 is active is important. Provided these time
steps are known, a separation algorithm with high resolution in these regions could do
a good job without considering the whole time period of s.

6.1. Time-Frequency Analysis
The next step is to compute the spectrogram X = Fϕ,Ds of s. The spectrogram
plots the frequency range of the signal at each time step against the time. While in
the time-amplitude plot only one information per time step is available, namely the
amplitude of the signal, the spectrogram provides much more information per time step.
Time-frequency analysis somehow opens the signal to make this information accessible.
Figure 6.1 illustrates this benefit of time-frequency transforms as STFT.
We use a STFT based on the discrete Hann window defined in Section 1.2 with

window length D = 512, i.e. each of the segments sk is made of 512 samples. For the
frequency range at each time step a 512-point FFT is applied on the windowed signal.
The hop size is chosen as h = 64, which means that the segments sk have a distance of
64 sample points, and thus the segments overlap. As a consequence the interval between
two time steps in the spectrogram consists of 64 sample points. Since N = 100000 this
yields n = 1555 time steps.

Figure 6.1 shows the spectrograms of s, s1 and s2. As well as in the time-amplitude
plot the signal s2 is hidden in the signal s1, with the result that the spectrograms of s
and s1 are hardly distinguishable.
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6. Independent Subspace Analysis: An illustrative example
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(d) Spectrogram of the castanets Fϕ,Ds2.
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(f) Spectrogram of the mixture X = Fϕ,Ds.

Figure 6.1.: The mixed signal s is the sum of s1 and s2.
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6.2. Dimensionality Reduction

6.2. Dimensionality Reduction

If we interpret the spectrogram of s (Figure 6.1f) as a 512× 1555 matrix, each row of
the spectrogram corresponds to one frequency and each column to a time step. Thus
the entry (i, j) of the spectrogram provides the portion of the frequency i at time j.
Various rows of the spectrogram resemble each other, such that the assumption, that
the data set X lies in a low-dimensional space or manifold is plausible. Reducing the
dimensionality from D = 512 to d = 10 leads to the reduced data sets YPCA = PPCA(X)
and YLE = PLE(X). A plot of each row of the reduced data set is presented in Figure
6.2 and 6.3. Even though some of the rows are quite diffuse, we can already conjecture
that for example 6.2a or 6.3a correspond to the cymbal and 6.2b or 6.3c to the castanets.
We take d = 10 as the intrinsic dimensionality of the data set X because this gives

the best result. This choice is consistent with [50] where a range from 10 up to 30
dimensions is proposed. In the case of LE we use r-ary neighborhoods (cf. Section
2.3.1) with r = 100. For the implementation the dimensionality reduction toolbox for
MATLAB provided by van der Maaten [38] is employed.

6.3. Independent Component Analysis

Application of Independent Component Analysis on the data sets YPCA and YLE leads
to two sets of independent components ZPCA and ZLE shown in Figure 6.4 and 6.5.
Later on, these components are partitioned into two sets each of which is corresponding
to one of the source signals. This clustering can be done by a grouping algorithm.
Nevertheless, at this point we can already identify manually some components be-

longing to each of the sources. For example in the case of PCA the components 6.4b
and 6.4g should be assigned to the castanets and the component 6.5c in the case of
LE. Furthermore, the components 6.4d and 6.4j, 6.5d and 6.5h respectively, match the
cymbal. This classification is heuristic and only possible since we know the sources.

However, some of the components are not easily assignable. But in general the sepa-
ration property of ICA improves the detection quality, as can be seen comparing Figure
6.2 and 6.4, 6.3 and 6.5 respectively. More precisely, the peaks of the castanets emerge
noticeably after the application of ICA and some background signals are suppressed.
Regarding the results of ICA with LE, component 6.5c is noteworthy, because it

reflects almost the complete pattern of the castanets (compare Figure 6.1c). We conclude
that ICA combined with the non-linear dimensionality reduction technique leads to a
slightly better detection of the transitory castanets.

Note that the independent components are not a filtered version of the reduced data
set, but rather a basis, i.e. the rows of the data matrix Y are linear combinations of
the independent components. To compute the mixing matrix A we used the JADE
algorithm implemented by Cardoso [6] which we introduced in Section 3.3.
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6. Independent Subspace Analysis: An illustrative example
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Figure 6.2.: Results after applying Principal Component Analysis to the data set
X. The reduced data matrix YPCA has d = 10 rows.
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6.3. Independent Component Analysis
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Figure 6.3.: Results after applying Laplacian Eigenmaps to the data set X. The
reduced data matrix YLE has d = 10 rows.
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6. Independent Subspace Analysis: An illustrative example
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Figure 6.4.: Applying Independent Component Analysis to the reduced data set
YPCA leads to a set of 10 components ZPCA.
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6.3. Independent Component Analysis
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Figure 6.5.: Applying Independent Component Analysis to the reduced data set
YLE leads to a set of 10 components ZLE .
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6. Independent Subspace Analysis: An illustrative example
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(b) Ixegram DLE of ZLE .

Figure 6.6.: Ixegram, matrix of dissimilarities. The bluer a cell, the more similar
the components are.

6.4. Grouping

Regarding the independent components in ZPCA or ZLE , we are already able to
classify some of them but not all. This assignment is only possible since we know the
sources, which is usually not the case. Due to this fact, the clustering should be done
automatically. One possibility is to sort the components by their similarity to each
other as discussed in Section 4.2. This is done by an evaluation of the ixegram, a matrix
containing the pairwise dissimilarities of the components (see Figure 6.6). The more
similar the components zi and zj are, the smaller the entry (i, j) of the ixegram is. The
proposed clustering algorithm computes an assignment matrix M using the ixegram
D. This computation is based on the minimization of the functional H(M,D). The
assignment matrices obtained by this procedure are

MPCA =



0 1
0 1
0 1
0 1
1 0
1 0
0 1
0 1
1 0
0 1


and MLE =



0 1
1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
0 1


.
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6.4. Grouping
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Figure 6.7.: Independent components
assigned to the castanets (left column:
ICA with PCA, right column: ICA with
LE). The results are obtained by the
grouping algorithm based on similarity
measurements.
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(g) Component 7 of ZLE .

The entry (i, k) of the assignment matrix has to be interpreted as the probability with
which component zi belongs to the kth source, for i = 1, . . . , 10 and k ∈ {1, 2}. This
clustering leads to a classification of the components. The components assigned to the
signal of the castanets are shown in Figure 6.7.

Unfortunately, the selected components in the case of PCA are not at all representing
the pattern of the castanets. Therefore, it is a natural proceeding to compare these
results with a manual grouping in order to see if better results can be obtained. A
possible assignment matrix corresponding to a manual choice would be

Mhand
PCA =



0 1
1 0
0 1
0 1
1 0
0 1
1 0
0 1
0 1
0 1


.
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6. Independent Subspace Analysis: An illustrative example

0 500 1000 1500
0

0.5

1

(a) Component 2 of ZPCA.

0 500 1000 1500
0

0.5

1

(b) Component 5 of ZPCA.

0 500 1000 1500
0

0.5

1

(c) Component 7 of ZPCA.

Figure 6.8.: These three components
computed by ICA with PCA are as-
signed manually to the castanets.

The components assigned to the castanets by this manual grouping are shown in Figure
6.8. This result is much better than the previous one (see Figure 6.7a - 6.7c). This
raises the conjecture that the grouping method proposed by Casey and Westner [10] in
not adequate in our situation. This could be due to the transience of the source signals.

Running the algorithm explained in this chapter needs only a few seconds on a
standard personal computer. This is an important progress caused by the inclusion of
dimensionality reduction to the concept of ISA. This modification reduces the dimensions
of the mixing matrix A from 512× 512 to 10× 10.
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7. Separation in the case of PCA

So far we have seen how dimensionality reduction and ISA can be used for signal detection.
To give a perspective for further applications we shortly discuss the separation in the
special case of PCA.
Referring to the separation of signals, we have already stated that a computation of

the source signals is only possible if we are able to back transform the dimensionality
reduced data into the original high-dimensional space. In the case of PCA, for instance,
a back transform is given by the matrix W . Provided this back transform, theoretically
nothing prevents us from a complete separation of the signal, since inversion formulas
for the other steps of the algorithm, i.e. STFT and ICA, are well studied. But in
practice, even if the back transform is known, this does not necessarily imply that an
adequate reconstruction of the source signals is possible. This is due to the fact that
the underlying mixing model might not bee completely satisfied.

Returning to the signal detection in which PCA was involved, we can continue with a
reconstruction step. The low-dimensional data set YPCA can be decomposed by ISA in
two data sets Y1 and Y2 corresponding to the two sources (compare Theorem 4.1). If
the spectrogram X = Fϕ,Ds and the reduced data Y fulfill the PCA model X = WY ,
each of the data sets can be back transformed by W . This leads to the spectrograms
X1 = WY1 and X2 = WY2 of the source signals.

The inverse STFT cannot be directly applied to the so obtained spectrograms, since
the phase information is missing. Therefore, in a naive ansatz we assume that the phase
angles of the sources are the same as of the original signal because this information is
accessible.
If we take a look at the results shown in Figure 7.1, we observe that the extracted

sources are different from the input signals s1 and s2 (cf. Figure 6.1). The poor
separation can be explained partly by the non-conformity of the data and the PCA
model X = WY . The gravity of this mismatching becomes apparent if we compare
the back transformed mixture s with the original one in Figure 6.1e. In the ideal case
these two signal should be the same. The spectrograms depict the fact that a lot of
information was lost during the process of PCA because not only small eigenvalues of
the covariance matrix XXT were neglected. This increases the mismatching.

Further reasons for the poor separation could be the fact that the ICA mixing model
is not completely respected and the use of an inappropriate clustering algorithm. For
the purpose of comparison we also reconstruct the source signals based on the manually
composed assignment matrix Mhand

PCA . The results are shown in Figure 7.2. For the
grouping by hand the obtained results are much better than before, which confirms the
impression that the clustering algorithm has to be improved. The signal of the castanets
is quite well extracted but further work has to be done for entirely satisfying results.
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7. Separation in the case of PCA
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(b) Spectrogram of source 1.
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(d) Spectrogram of source 2.
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(f) Spectrogram of the reconstructed mixture.

Figure 7.1.: In the case of PCA, a back transform is possible. The so obtained
separation depends on the assignment matrix MPCA.

68



am
pl

itu
de

time [s]
0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) Source 1.
fr

eq
ue

nc
y

time [window]
0 500 1000 1500

50

100

150

200

250

(b) Spectrogram of source 1.
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(d) Spectrogram of Source 2.
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(f) Spectrogram of the reconstructed mixture.

Figure 7.2.: The back transform based on the manual assignment of the independent
components leads to better results.
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8. Conclusion
In many application fields signal separation and, as a consequence, signal detection is a
crucial task. Even though there are some well-understood methods, the development
depends on experimental results supported by a correct understanding of the mathe-
matical background. In recent years, the research has focused on several extensions of
Independent Component Analysis (ICA) (see [8], [10], [29]) among them Independent
Subspace Analysis (ISA). ISA is a combination of the classical ICA method and time-
frequency analysis. Since time-frequency data have usually a high dimensionality, there
have been several approaches to involve dimensionality reduction in the concept of ISA
(see [17], [18], [50]).

The objective of this work was to evaluate the usage of Principal Component Analysis
(PCA) and Laplacian Eigenmaps (LE) in signal detection. Therefore, we have introduced
the concepts of short-time Fourier transform (STFT), PCA, LE, ICA and ISA in the
first part of this work and in the second we discussed a concrete example to illustrate
these methods and to see how they act on a complex mixture of transitory signals.
We have seen that sources can still be detected if the ICA is applied to reduced

spectrogram. PCA and LE improve this detection in various aspects. On the one hand, it
speeds up the separation into statistically independent components since the dimension
of the unmixing matrix G decreases immensely. On the other hand, the computational
cost of the assignment matrix M , depending on the number of independent components
is reduced. It is surprising that the linear reduction method PCA gives relatively
good results, but the results obtained with the non-linear method LE are even more
sophisticated.

Furthermore, we introduced a clustering algorithm to assign the independent compo-
nents to the different sources. The resulting clustering did not meet our expectations
since a manual assignment leads, at least in the case of PCA, to much better results.
In conclusion, the application of ICA improves the quality of the detection in both

cases (PCA and LE).
Of course, we do not claim that this work includes all of the diverse aspects related

to the topic of dimensionality reduction in ISA for signal detection, but we tried to give
an overview of this field. Although we have achieved relatively good results, further
improvement of the detection scheme is necessary. There are various aspects whose
influence on the detection quality of the scheme could be studied. Among these are the
usage of different time-frequency analysis methods as for example the wavelet transform,
the comparison of new dimensionality reduction methods, other grouping algorithms
and alternatives to ICA. In the next paragraphs we like to highlight some of these.
Dimensionality reduction methods: As we have seen in the previous chapters

the quality of the detection and separation depends on the conformity of the data and
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8. Conclusion

the dimensionality reduction model. Due to the fact that dimensionality reduction
methods are only able to approximate the manifold where the data set lies on, the model
is typically not fully respected. Especially in the case of complex manifolds this leads to
an inexact detection. Since the family of dimensionality reduction methods is huge, there
is a lot more work to do. Auditory signals are complicated structures which might be
extremely complex, such that the usage of non-linear techniques becomes necessary. In
particular in the last decades, there have been developed many innovative dimensionality
reduction algorithms as for example ISOMAP as an extension of Multidimensional
Scaling (MDS), Local Tangent Space Alignment (LTSA), Whitney embedding based
methods or Riemannian Normal Coordinates (RNC). It might be interesting to compare
the different methods in interaction with ICA.
An additional task is to study the possibility of back transforming the reduced data

into the original high-dimensional space. This would enable the extraction of source
signals and thus a complete separation of the mixed signals could be obtained.
Grouping: Another aspect which could be analyzed is the grouping method. In

Section 6.4 we have seen that clustering the components in not an easy task since for
some of the components it is not clear at all to which source they belong. We used
the clustering algorithm proposed in [10] to identify the subspaces where the different
sources are lying in. But the results presented in the second part have raised the
conjecture that this algorithm was not adequate. Thus, a further task could be the
evaluation of other clustering algorithms which probably lead to more sophisticated
results. While the presented method uses pairwise dissimilarities of the components,
there are other methods which are not based on statistical tools as the measure for
the similarity of density functions. For instance, the clustering algorithm proposed in
[50] relying on different features of a signal, namely percussiveness, noise-likeness and
spectral dissonance, and another algorithm, based on the envelopes of the subspaces
corresponding to the sources (see [52]), are very promising approaches in this context.
Non-Negative Matrix Factorization: In order to decompose the reduced spec-

trogram Y we have modelled the data as a random process, i.e. we have interpreted the
data matrix Y as n realizations of a random vector. This is an assumption about which
one can argue, because the origin of many signals (especially music) is deterministic.
Therefore, it could be interesting to see how non-statistic matrix decompositions for a
data set behave in combination with dimensionality reduction methods. One of these
decompositions is non-negative matrix factorization which has already been used for
single-channel problems (compare [46] and [51]).
Parameter tuning: Some of the involved parameters, as for example the intrinsic

dimensionality of the spectrogram or the number of source signals, were chosen manually.
This choice should be automated for an extension of the application to other signals.
Also a study concerning the dependence of the result on the parameters could be
interesting.

Summarizing we can say that the discussed dimensionality reduction techniques are
able to detect the source signal in our example, but further investigations are necessary
to dispose the algorithm for practical use.
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