Blatt 9

WiS 2020/21 — H. Kiechle

Präsenzaufgaben

49. Ergänze folgenden Lückentext zur vollständigen Induktion:

Behauptung: $1+3+5+\cdots+(2n-1)=n^2$ für alle $n\in\mathbb{N}$

Beweis : I. ______ : Die Behauptung ist richtig für n =___ , da _____ gilt.

II.______: Wir nehmen für ein beliebiges, aber festes $n \in \mathbb{N}$ an, dass

III. Induktionsschluss: Wir zeigen $1+3+\cdots+(2n-1)+(2(n+1)-1)=$ _____. Es gilt ______

, was zu zeigen war.

- **50.** Beweise für alle $n \in \mathbb{N}_0$: $\sum_{k=0}^n 2^k := 1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} 1$.
- **51.** Wahr oder falsch?

(a)
$$\sum_{i=1}^{4} j = 11$$

(b)
$$\sum_{k=1}^{l} k = \sum_{l=1}^{k} l$$

(c)
$$\sum_{\ell=1}^{7} 5 = 35$$

Hausaufgaben

Vollständige Induktion darf auf diesem Blatt nicht in Kurzform ausgeführt werden.

52. Beweisen Sie drei der folgenden vier Aussagen mit Induktion.

[24 Punkte]

- (a) $\forall n \in \mathbb{N} : \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- (b) $\forall n \in \mathbb{N}_0 : 3 | (n^3 n).$
- (c) Gegeben sei $h \in \mathbb{R}$, mit $h \ge -1$, dann gilt $(1+h)^n \ge 1+nh$ für alle $n \in \mathbb{N}_0$. An welcher Stelle verwenden Sie die Voraussetzung $h \ge -1$?
- (d) Es sei $q \in \mathbb{R}$, $q \neq 1$, dann gilt $\sum_{i=0}^n q^i = \frac{q^{n+1}-1}{q-1} \text{ für alle } n \in \mathbb{N}_0.$

53. \heartsuit Beweisen Sie für alle $a, m \in \mathbb{N}_0$.

(a)
$$1+m=m+1$$
.

Hinweis: (\star) $\nu(a) = a + 1$ aus der Vorlesung wurde schon bewiesen!

(b)
$$a+m=0 \implies a=0 \land m=0$$
.

Aufgaben, die mit \heartsuit gekennzeichnet sind, dürfen nur mit Hilfe der Peano-Axiome und daraus schon abgeleiteter Aussagen bewiesen werden. Jeder Beweisschritt ist durch ein geeigentes Zitat zu belegen.