Blatt 1 SoS 2023 — H. Kiechle

Präsenzaufgaben

- 1. Wir betrachten den binären Code $C := \{00000, 10110, 01011, 11101\}$ der Länge 5.
 - (a) Nehmen Sie an, dass eines der Codewörter beim Senden durch einen Kanal an einer Stelle verändert wurde. Zeigen Sie, dass das Original-Codewort eindeutig bestimmt ist.
 - (b) Wie ist das, wenn zwei Bits verändert wurden?
- 2. Wahr oder falsch?
 - (a) Ein Code in dem alle Wörter Codewörter sind kann einen Fehler erkennen.
 - (b) Ein q-närer Code der Länge n hat höchstens q^n Codewörter.
 - (c) Ein binärer Paritätskontroll-Code der Länge n hat genau 2^{n-1} Elemente.
 - (d) Der genetische Code ist kein Code im Sinne der Codierungstheorie.

Hausaufgaben

- **3.** Fortsetzung der Aufgabe 1. Sei also $\mathcal{C} := \{00000, 10110, 01011, 11101\}.$
 - (a) Welche Informations ate hat C?
 - (b) Zu jedem Codewort c sei K_c die Menge aller Wörter, die durch Veränderung an höchstens einer Stelle von c entstehen. Zeigen Sie
 - i. K_c hat genau 6 Elemente;
 - ii. falls $c, c' \in \mathcal{C}$ mit $c \neq c'$, dann gilt $K_c \cap K_{c'} = \emptyset$;
 - iii. es gibt Elemente, die nicht eindeutig dekodiert werden können. Wie viele?
 - (c) Gesucht ist ein binärer Code der Länge 4, der einen Fehler korrigieren kann und die Worte aus Beispiel (1.1) der Vorlesung jeweils am Anfang stehen hat (analog ist \mathcal{C} entstanden). Dieser Code hätte also vier Elemente. Gibt es so einen Code?
- 4. Wir benutzen das Alphabet \mathbb{Z}_5 und betrachten den Paritätskontroll-Code der Länge 6.
 - (a) Untersuchen Sie folgende Wörter auf Korrektheit

203041, 012340, 021340, 132201, 000000, 010010,

- (b) 123414 ist ein Codewort. Untersuchen Sie an Beispielen ob folgende Veränderungen erkannt werden
 - i. eine Ziffer wird verändert;
 - ii. zwei Ziffern werden verändert;
 - iii. zwei Ziffern werden vertauscht.

Diskutieren Sie insbesondere ob Ihre Beobachtungen immer oder nur manchmal richtig sind, ob es also Ausnahmefälle gibt.