9 Euklidische Ebenen — axiomatisch

Wir erinnern daran, dass euklidische Ebenen affine Ebenen mit Kongruenz sind, die
also die Axiome (W1), (W2), (W3) erfiillen. Aukerdem gilt (I3). Das Minimalmodell
affiner Ebenen scheidet somit aus.

Insbesondere sind affine Ebenen Austauschebenen und alle Sétze des vorigen
Abschnitts gelten. Man beachte, dass die wichtigste Folgerung aus der Austausch-
Eigenschaft unter (8.1) zu finden ist.

Wir werden sehen, dass alle Bewegungen mit Geradenspiegelungen beschrieben werden
kénnen. Dabei spielt der Dreispiegelungssatz eine wichtige Rolle.

Im Folgenden sei also stets (E,®,=) eine euklidische Ebene. Wir denken uns bei
Bedarf die affine Ebene (F,®) in den projektiven Abschluss eingebettet. Die Ferngera-
de sei stets mit F' bezeichnet. Jede Bewegung ¢ besitzt eine Fortsetzung ¢* auf den
projektiven Abschluss. Diese Bezeichnungen werden wir haufig ohne Hinweis verwenden.

Wichtig ist die Tatsache, dass fiir jedes G € & die Fortsetzung der Spiegelung G*
eine Zentralkollineation mit Achse G U {[G]} und Zentrum [L] ist, wenn L L G.

(9.1) Seien G,H, L€ & mit G L L. Fsgilt: H 1L < H|G.

Beweis. Nach Voraussetzung ist [G]| das Zentrum von L*. OE gilt H # L, dann ist
wegen (8.7.2)

das bedeutet aber gerade H||G. -

Der folgende Satz ist von zentraler Bedeutung.

(9.2) Satz. Fir G,H € & mit G|H ist GH eine Translation mit Richtung orthogonal
2u G

Beweis. OE gelte G # H. Wir setzen 7 = GH. Wegen (8.10.1) und GN H = @ hat 7
keine Fixpunkte.
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Daher ist 7 eine Translation. =

(9.3) Satz. Seien a,b € E zwei verschiedene Punkte.
(1) a,b haben genau ein Mittellot.
(2) Fiir alle ¢ € a,b ezistiert genau ein L €'¢ mit L 1 a,b.

(3) Es existiert (genau) eine Translation T mit 7(a) = b. Somit ist (E,®) eine Trans-
lationsebene.

Beweis. (1) Wihle G € & mit G L a,b und ¢ € G\ a,b.
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Die Eindeutigkeit steht schon in (8.8.2).

(2)

(9.4) Bemerkung. 1. Man kann also in euklidischen Ebenen auf jede Gerade in jedem
Punkt dieser Geraden genau ein Lot errichten.

2. Zu Translationsebenen vgl. auch (5.20) und die darauf folgenden Aussagen.

3. Wie in (5.21.2) beschrieben, kann auf F eine Addition so eingefithrt werden, dass
(E,+) eine kommutative Gruppe wird. Das neutrale Element sei mit 0 bezeichnet.

4. Durch eine weitere Konstruktion, die hier nicht beschrieben werden soll, kann man
eine (kommutative) Multiplikation (mit neutralem Element 1) auf E so einfiihren,
dass (E,+,-) ein Korper wird. Setzt man K = 0,1, so kann man zeigen, dass K :
E — FE ein involutorischer Korperautomorphismus ist. Das fithrt auf den

(9.5) Darstellungssatz. Sei (F,®,=) eine euklidische Ebene. Auf E existieren eine

Addition, eine Multiplikation und ein involutorischer Kdrperautomorphismus - =0,1
so, dass (E,+,-) Korper, und (E,®,=) die euklidische Ableitung von (E, ) ist. Ins-

besondere gilt (a,b) = (¢,d) <= (a—0b)(a—0b) = (c—d)(c—d) fir a,b,c,d € E.

Beweis. 4] enthélt einen direkten Beweis. n

Eine direkte Folgerung ist
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(9.6) Satz. In jeder euklidischen Ebene gilt der grofie Satz von Pappus (AP). =

Wir steuern jetzt eine Klassifikation aller Bewegungen an.

(9.7) Satz. Sei p € B

(1) Gilt Fixp = {z}, so gibt es Geraden G, H € Z mit ¢ = GH .
@ heifst dann Drehung um z.

(2) ¢ ist Produkt von hochsten drei Geradenspiegelungen.

Beweis. Wir benutzen die Existenz von Mittelloten (9.3).

(1)

Das ist die Behauptung.

(2) Ist Fixp # @, so liefern (8.6.2) und (1) jeweils die Behauptung. In der Tat ist ¢
das Produkt von héchsten zwei Geradenspiegelungen.

Es bleibt der Fall, dass es keinen Fixpunkt gibt.
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Daher folgt auch hier die Behauptung. n

(9.8) Bemerkung. 1. Der obige Beweis benutzt nur die Existenz von Mittelloten. Da-~
her gilt er insbesondere auch fiir das Kleinsche Modell einer hyperbolischen Ebene.

2. Die Darstellung einer Drehung durch zwei Spiegelungen ist keineswegs eindeutig. In

[t

der Tat gibt es fiir ¢ = GH mit 2z = GNH und A € 2" immer je genau ein B, B’ €z
mit ¢ = AB bzw. ¢ = B'A.

3. Im Fall £ = C ist der Drehwinkel von ¢ gegeben durch die Beziehung
4(55, Z, 90('1')) =2- Z(Ha G)

4. Analoges gilt fiir die Darstellung von Translationen als Produkt zweier Geradenspie-
gelungen. Das zeigt der folgende Satz.

(9.9) Dreispiegelungssatz fiir Lotbiischel. Fir die Geraden A, B,C,L € & gelte
A,B,C L L. Dann existiert genau ein G € & mit ABC = G. Dabei gilt G L L.

Beweis. Nach (8.10.2) gilt ¢ := ABC # id. Statt L kann wegen (9.1) jede Gerade
parallel zu L stehen. Daher kann oE angenommen werden, dass es x € L gibt mit

o(x) # .

Das ist die Behauptung. =
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Fiir den Rest des Abschnitts brauchen wir eine weitere Voraussetzung;:
Wir nehmen an, dass fiir alle G, H € 6 gilt G 1L H — GNH#O.

(9.10) Bemerkung. 1. Fiir einen koordinatisierenden Korper E bedeutet das 2 # 0.

2. Zwei verschiedene Punkte a,b haben dann immer einen Mittelpunkt m = a,bN M,
wenn M das Mittellot von a,b ist (vgl. (8.8.2)). Im Fall a = b setzt man natiirlich
m =a =">. In jedem Fall ist m = }(a +b) (siche Ubung).

3. Im Fall 2 =0 gilt tatséchlich G L H = G||H.

Definition. Eine Bewegung ¢ heikt Gleitspiegelung oder Schubspiegelung, wenn
es Geraden A, B,G € & gibt mit A, B 1. G und ¢ = ABG.

@ ist also die Verkettung einer Spiegelung mit einer anschliefsenden Translation in
Richtung von G (vgl. (9.2)).

Eine Gleitspiegelung heiftt echt, wenn A # B, wenn also ¢ keine Spiegelung ist.

Wir halten die wichtigsten Eigenschaften fest.
(9.11) Seien A, B,G € & mit A,B L G und A# B. Setze ¢ = ABG und T = AB,

sodass ¢ = TG eine echte Gleitspiegelung ist.

(1) 7 und G sind vertauschbar, d.h. TG = Gr.
Insbesondere ist auch ¢! = 771G eine echte Gleitspiegelung.

(2) G ist einziges Fizelement von ¢.
Genauer: ¢ hat keine Fizpunkte, und G st einzige Fixgerade.

(3) Die Translation T und die Gerade G sind eindeutig bestimmit.

Beweis. (1)
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Also gibt es keinen Fixpunkt.
Dass G eine Fixgerade ist, ist klar.

(3) ist eine direkte Folge von (2) und der Tatsache, dass ¢G eine Translation ist. m

Die Gerade G wird manchmal als Achse der Gleitspiegelung bezeichnet. Da G keine
Fixpunktgerade ist, deckt sich das nicht mit unserer gewohnten Sprechweise — also
Vorsicht!

Es folgt die versprochene Klassifikation von Bewegungen.

(9.12) Satz. Jede Bewegung ¢ € B ist von einem der folgenden Typen
o Translation
e Drehung (d.h. ¢ = AB mit ANB = z)
o Gleitspiegelung (d. h. ¢ = TG mit einer Translation T, auch T =1id maglich).

Beweis. Wegen (9.7) und (9.2) ist nur noch der Fall ¢ = GHL mit verschiedenen
G,H,L € & zu betrachten. Nach (9.9) diirfen wir oE annehmen, dass nicht alle drei
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Geraden parallel sind. Nach Ubergang zu ¢! = LHG falls notig, diirfen wir also a =
G N H voraussetzen. In der Tat, ¢ ist von einem der genannten Typen genau dann,
wenn ! vom selben Typ ist (vgl. insbesondere (9.11.1)).

Setze K ={a L L}, b= KNL und A= GHK (Dreispiegelungssatz im Punkt a).
Nun sei B = {b||A} und D = BKL (Dreispiegelungssatz im Punkt b). Wir haben
KL = BD ist eine Involution. Daher gilt B L D und mit (9.1) A L D. Schlieklich
findet man ¢ = GHL = AKL = ABD ist eine Gleitspiegelung (mit Achse D).

Damit sind alle Moglichkeiten erschopft. n

(9.13) Satz von Thales. Seien a,b,c € E nicht kollinear und m Mittelpunkt von a,b.
Dann gilt: (m,c) = (m,a) <= a,c Lb,c.

Beweis. ,,==*: Seien G, H die Mittellote von a,c bzw. ¢,b, dann gilt m = G N H
und HG(a) = H(c) = b. Daher hat man HG(a,b) = a,b und nach (8.12.1) ist HG
involutorisch. Daher gilt G L H. Da auch b,c 1L H folgt mit (9.1) b,c||G. Wegen
G L a,c erhilt man a,c L b, c.

, <= Es sei d der Mittelpunkt von a,c, und es sei 7 bzw. 7" die Translationen mit
7(a) = m bzw. 7/(a) = d, die nach (9.3) existieren. Sei M = {m L a,b} und L das
Mittellot von a,m. Dann gilt 7 = ML. Es folgt T(m) = Mz(m) = ZT/[/(a) = b. Analog
zeigt man 7'(d) = c.

Nach (5.22) bilden die Translationen eine kommutative Gruppe. Daher gilt

7' (m) =d und (7"7'_1>2 (b) =777 b) = P (m) = 77 (a) = 7'(d) = c.

Deshalb ist [d,m] Richtung von 777! und [b, ¢] ist Richtung von (7"7'_1)2. Diese miissen
aber gleich sein. Das zeigt G := d, m||b,c. Aus a,c L b, c folgt mit (9.1) a,c¢ L G, und
G ist Mittellot von a,c. Es folgt G(a) = ¢ und daher (m,c) = (m,a). n

Fiir die letzten beiden Aussagen sei £ ein Korper mit einem involutorischen Automor-
phismus  und dem Fixkoérper K. Es gelte 2 # 0. Weiter sei (F,®,=) die euklidische

Ableitung. Wir erinnern an die quadratische Form Q(z) = zz und die zugehorige Bili-
nearform By, die durch Bg(z,y) = zy + xy festgelegt ist (siche (6.3)).

(9.14) Sei (E,®,=) cuklidische Ableitung des Kdrpers E mit dem involutorischen

Automorphismus — und es sei 2 # 0.

(1) Die Punkte a,b besitzen den Mittelpunkt 5(a + b).

(2) Fiir drei verschiedene Punkte a,b,c € E gilt a,c L b,c <= Bg(a—c,b—c) = 0.

Beweis. (1) Siehe Aufgabe 53.

(2) Es gilt einerseits a,c L b,c <= s :=a,c(b) € bc (etwa wegen (8.12)) und
andererseits s € b,c <= s = 2c¢ — b, denn in diesem Fall ist ¢ Mittelpunkt von s,b.
Weiter gilt mit (6.7.2)

a—=c¢

(ch) =2c—b <= (a—c)(b—c)=—(b—c)la—2c)

<= Bgla—cb—c)=0. -

S=c-+

a—=c
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(9.15) Satz von Pythagoras. Sei (E,_(’5, =) euklidische Ableitung des Kdrpers E mit
dem involutorischen Automorphismus und es sei 2 # 0. Fiir drei nicht kollineare
Punkte a,b,c € E gilt a,c Lbc < Qla—c)+Q(b—c)=Q(a—D0).

Beweis. Qa—b)=Qa—c—(b—¢))=Q(a—c)+Q(b—c)— Bgla—c,b—c) =

=Qa—c)+Q(b—c) — Bgla—c,b—c)=0 < a,c Lbc mit(9.14). g
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