
9 Euklidische Ebenen — axiomatisch

Wir erinnern daran, dass euklidische Ebenen affine Ebenen mit Kongruenz sind, die
also die Axiome (W1), (W2), (W3) erfüllen. Außerdem gilt (I3). Das Minimalmodell
affiner Ebenen scheidet somit aus.

Insbesondere sind affine Ebenen Austauschebenen und alle Sätze des vorigen
Abschnitts gelten. Man beachte, dass die wichtigste Folgerung aus der Austausch-
Eigenschaft unter (8.1) zu finden ist.

Wir werden sehen, dass alle Bewegungen mit Geradenspiegelungen beschrieben werden
können. Dabei spielt der Dreispiegelungssatz eine wichtige Rolle.

Im Folgenden sei also stets (E,G,≡) eine euklidische Ebene. Wir denken uns bei
Bedarf die affine Ebene (E,G) in den projektiven Abschluss eingebettet. Die Ferngera-
de sei stets mit F bezeichnet. Jede Bewegung φ besitzt eine Fortsetzung φ∗ auf den
projektiven Abschluss. Diese Bezeichnungen werden wir häufig ohne Hinweis verwenden.

Wichtig ist die Tatsache, dass für jedes G ∈ G die Fortsetzung der Spiegelung G̃∗

eine Zentralkollineation mit Achse G ∪ {[G]} und Zentrum [L] ist, wenn L ⊥ G.

(9.1) Seien G,H,L ∈ G mit G ⊥ L. Es gilt: H ⊥ L ⇐⇒ H∥G.

Beweis. Nach Voraussetzung ist [G] das Zentrum von L̃∗. OE gilt H ̸= L , dann ist
wegen (8.7.2)
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das bedeutet aber gerade H∥G. ■

Der folgende Satz ist von zentraler Bedeutung.

(9.2) Satz. Für G,H ∈ G mit G∥H ist G̃H̃ eine Translation mit Richtung orthogonal
zu G.

Beweis. OE gelte G ̸= H . Wir setzen τ = G̃H̃ . Wegen (8.10.1) und G ∩H = ∅ hat τ
keine Fixpunkte.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Daher ist τ eine Translation. ■

(9.3) Satz. Seien a, b ∈ E zwei verschiedene Punkte.

(1) a, b haben genau ein Mittellot.

(2) Für alle c ∈ a, b existiert genau ein L ∈ c mit L ⊥ a, b.

(3) Es existiert (genau) eine Translation τ mit τ(a) = b. Somit ist (E,G) eine Trans-
lationsebene.

Beweis. (1) Wähle G ∈ G mit G ⊥ a, b und c ∈ G \ a, b .
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Die Eindeutigkeit steht schon in (8.8.2).
(2)
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(9.4)Bemerkung. 1. Man kann also in euklidischen Ebenen auf jede Gerade in jedem
Punkt dieser Geraden genau ein Lot errichten.

2. Zu Translationsebenen vgl. auch (5.20) und die darauf folgenden Aussagen.

3. Wie in (5.21.2) beschrieben, kann auf E eine Addition so eingeführt werden, dass
(E,+) eine kommutative Gruppe wird. Das neutrale Element sei mit 0 bezeichnet.

4. Durch eine weitere Konstruktion, die hier nicht beschrieben werden soll, kann man
eine (kommutative) Multiplikation (mit neutralem Element 1) auf E so einführen,
dass (E,+, · ) ein Körper wird. Setzt man K = 0, 1, so kann man zeigen, dass K̃ :
E → E ein involutorischer Körperautomorphismus ist. Das führt auf den

(9.5) Darstellungssatz. Sei (E,G,≡) eine euklidische Ebene. Auf E existieren eine
Addition, eine Multiplikation und ein involutorischer Körperautomorphismus = 0̃, 1
so, dass (E,+, · ) Körper, und (E,G,≡) die euklidische Ableitung von (E, ) ist. Ins-
besondere gilt (a, b) ≡ (c, d) ⇐⇒ (a− b)(a− b) = (c− d)(c− d) für a, b, c, d ∈ E .

Beweis. [4] enthält einen direkten Beweis. ■

Eine direkte Folgerung ist
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(9.6) Satz. In jeder euklidischen Ebene gilt der große Satz von Pappus (AP). ■

Wir steuern jetzt eine Klassifikation aller Bewegungen an.

(9.7) Satz. Sei φ ∈ B

(1) Gilt Fixφ = {z}, so gibt es Geraden G,H ∈ z mit φ = G̃H̃ .

φ heißt dann Drehung um z .

(2) φ ist Produkt von höchsten drei Geradenspiegelungen.

Beweis. Wir benutzen die Existenz von Mittelloten (9.3).
(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Das ist die Behauptung.
(2) Ist Fixφ ̸= ∅, so liefern (8.6.2) und (1) jeweils die Behauptung. In der Tat ist φ

das Produkt von höchsten zwei Geradenspiegelungen.
Es bleibt der Fall, dass es keinen Fixpunkt gibt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Daher folgt auch hier die Behauptung. ■

(9.8) Bemerkung. 1. Der obige Beweis benutzt nur die Existenz von Mittelloten. Da-
her gilt er insbesondere auch für das Kleinsche Modell einer hyperbolischen Ebene.

2. Die Darstellung einer Drehung durch zwei Spiegelungen ist keineswegs eindeutig. In
der Tat gibt es für φ = G̃H̃ mit z = G∩H und A ∈ z immer je genau ein B,B′ ∈ z
mit φ = ÃB̃ bzw. φ = B̃′Ã.

3. Im Fall E = C ist der Drehwinkel von φ gegeben durch die Beziehung

∠(x, z, φ(x)) = 2 · ∠(H,G).

4. Analoges gilt für die Darstellung von Translationen als Produkt zweier Geradenspie-
gelungen. Das zeigt der folgende Satz.

(9.9) Dreispiegelungssatz für Lotbüschel. Für die Geraden A,B,C, L ∈ G gelte
A,B,C ⊥ L. Dann existiert genau ein G ∈ G mit ÃB̃C̃ = G̃. Dabei gilt G ⊥ L.

Beweis. Nach (8.10.2) gilt φ := ÃB̃C̃ ̸= id . Statt L kann wegen (9.1) jede Gerade
parallel zu L stehen. Daher kann oE angenommen werden, dass es x ∈ L gibt mit
φ(x) ̸= x.
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Sei G das Mittellot von x, φ(x). Es gilt G ⊥ L, also G∥A und G̃φ(x) = x .
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Das ist die Behauptung. ■
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Für den Rest des Abschnitts brauchen wir eine weitere Voraussetzung:
Wir nehmen an, dass für alle G,H ∈ G gilt G ⊥ H =⇒ G ∩H ̸= ∅.

(9.10) Bemerkung. 1. Für einen koordinatisierenden Körper E bedeutet das 2 ̸= 0.

2. Zwei verschiedene Punkte a, b haben dann immer einen Mittelpunkt m = a, b ∩M ,
wenn M das Mittellot von a, b ist (vgl. (8.8.2)). Im Fall a = b setzt man natürlich
m = a = b. In jedem Fall ist m = 1

2
(a+ b) (siehe Übung).

3. Im Fall 2 = 0 gilt tatsächlich G ⊥ H =⇒ G∥H.

Definition. Eine Bewegung φ heißt Gleitspiegelung oder Schubspiegelung, wenn
es Geraden A,B,G ∈ G gibt mit A,B ⊥ G und φ = ÃB̃G̃.

φ ist also die Verkettung einer Spiegelung mit einer anschließenden Translation in
Richtung von G (vgl. (9.2)).

Eine Gleitspiegelung heißt echt, wenn A ̸= B, wenn also φ keine Spiegelung ist.

Wir halten die wichtigsten Eigenschaften fest.

(9.11) Seien A,B,G ∈ G mit A,B ⊥ G und A ̸= B . Setze φ = ÃB̃G̃ und τ = ÃB̃,

sodass φ = τG̃ eine echte Gleitspiegelung ist.

(1) τ und G̃ sind vertauschbar, d. h. τG̃ = G̃τ .
Insbesondere ist auch φ−1 = τ−1G̃ eine echte Gleitspiegelung.

(2) G ist einziges Fixelement von φ.
Genauer: φ hat keine Fixpunkte, und G ist einzige Fixgerade.

(3) Die Translation τ und die Gerade G sind eindeutig bestimmt.

Beweis. (1)
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(2) Anngenommen es gibt einen Fixpunkt x.
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Also gibt es keinen Fixpunkt.
Dass G eine Fixgerade ist, ist klar.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Also gilt G∥H.
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(3) ist eine direkte Folge von (2) und der Tatsache, dass φG̃ eine Translation ist. ■

Die Gerade G wird manchmal als Achse der Gleitspiegelung bezeichnet. Da G keine
Fixpunktgerade ist, deckt sich das nicht mit unserer gewohnten Sprechweise — also
Vorsicht!

Es folgt die versprochene Klassifikation von Bewegungen.

(9.12) Satz. Jede Bewegung φ ∈ B ist von einem der folgenden Typen

• Translation

• Drehung (d. h. φ = ÃB̃ mit A ∩B = z )

• Gleitspiegelung (d. h. φ = τG̃ mit einer Translation τ , auch τ = id möglich).

Beweis. Wegen (9.7) und (9.2) ist nur noch der Fall φ = G̃H̃L̃ mit verschiedenen
G,H,L ∈ G zu betrachten. Nach (9.9) dürfen wir oE annehmen, dass nicht alle drei
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Geraden parallel sind. Nach Übergang zu φ−1 = L̃H̃G̃ falls nötig, dürfen wir also a =
G ∩ H voraussetzen. In der Tat, φ ist von einem der genannten Typen genau dann,
wenn φ−1 vom selben Typ ist (vgl. insbesondere (9.11.1)).

Setze K = {a ⊥ L}, b = K ∩ L und A = GHK (Dreispiegelungssatz im Punkt a).
Nun sei B = {b∥A} und D = BKL (Dreispiegelungssatz im Punkt b). Wir haben
KL = BD ist eine Involution. Daher gilt B ⊥ D und mit (9.1) A ⊥ D . Schließlich
findet man φ = GHL = AKL = ABD ist eine Gleitspiegelung (mit Achse D).

Damit sind alle Möglichkeiten erschöpft. ■

(9.13) Satz von Thales. Seien a, b, c ∈ E nicht kollinear und m Mittelpunkt von a, b.
Dann gilt: (m, c) ≡ (m, a) ⇐⇒ a, c ⊥ b, c.

Beweis. „=⇒“: Seien G,H die Mittellote von a, c bzw. c, b, dann gilt m = G ∩ H
und H̃G̃(a) = H̃(c) = b. Daher hat man H̃G̃(a, b) = a, b und nach (8.12.1) ist H̃G̃
involutorisch. Daher gilt G ⊥ H. Da auch b, c ⊥ H folgt mit (9.1) b, c∥G . Wegen
G ⊥ a, c erhält man a, c ⊥ b, c .

„⇐=“: Es sei d der Mittelpunkt von a, c , und es sei τ bzw. τ ′ die Translationen mit
τ(a) = m bzw. τ ′(a) = d , die nach (9.3) existieren. Sei M = {m ⊥ a, b} und L das
Mittellot von a,m . Dann gilt τ = M̃L̃ . Es folgt τ(m) = M̃L̃(m) = M̃(a) = b. Analog
zeigt man τ ′(d) = c.

Nach (5.22) bilden die Translationen eine kommutative Gruppe. Daher gilt

τ ′τ−1(m) = d und
(
τ ′τ−1

)2

(b) = τ ′τ ′τ−1τ−1(b) = τ ′τ ′τ−1(m) = τ ′τ ′(a) = τ ′(d) = c.

Deshalb ist [d,m] Richtung von τ ′τ−1 und [b, c] ist Richtung von
(
τ ′τ−1

)2
. Diese müssen

aber gleich sein. Das zeigt G := d,m∥b, c . Aus a, c ⊥ b, c folgt mit (9.1) a, c ⊥ G , und
G ist Mittellot von a, c. Es folgt G̃(a) = c und daher (m, c) ≡ (m, a) . ■

Für die letzten beiden Aussagen sei E ein Körper mit einem involutorischen Automor-
phismus und dem Fixkörper K. Es gelte 2 ̸= 0 . Weiter sei (E,G,≡) die euklidische
Ableitung. Wir erinnern an die quadratische Form Q(x) = xx und die zugehörige Bili-
nearform BQ , die durch BQ(x, y) = xy + xy festgelegt ist (siehe (6.3)).

(9.14) Sei (E,G,≡) euklidische Ableitung des Körpers E mit dem involutorischen
Automorphismus und es sei 2 ̸= 0.

(1) Die Punkte a, b besitzen den Mittelpunkt 1
2
(a+ b).

(2) Für drei verschiedene Punkte a, b, c ∈ E gilt a, c ⊥ b, c ⇐⇒ BQ(a−c, b−c) = 0.

Beweis. (1) Siehe Aufgabe 53.
(2) Es gilt einerseits a, c ⊥ b, c ⇐⇒ s := ã, c (b) ∈ b, c (etwa wegen (8.12)) und

andererseits s ∈ b, c ⇐⇒ s = 2c − b , denn in diesem Fall ist c Mittelpunkt von s, b .
Weiter gilt mit (6.7.2)

s = c+
a− c

a− c

(
b− c

)
= 2c− b ⇐⇒ (a− c)(b− c) = −(b− c)(a− c)

⇐⇒ BQ(a− c, b− c) = 0. ■
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(9.15) Satz von Pythagoras. Sei (E,G,≡) euklidische Ableitung des Körpers E mit
dem involutorischen Automorphismus und es sei 2 ̸= 0. Für drei nicht kollineare
Punkte a, b, c ∈ E gilt a, c ⊥ b, c ⇐⇒ Q(a− c) +Q(b− c) = Q(a− b).

Beweis. Q(a− b) = Q(a− c− (b− c)) = Q(a− c) +Q(b− c)−BQ(a− c, b− c) =

= Q(a− c) +Q(b− c) ⇐⇒ BQ(a− c, b− c) = 0 ⇐⇒ a, c ⊥ b, c mit (9.14). ■
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