
7 Das Kleinsche Modell einer hyperbolischen Ebene

Hyperbolischen Ebenen sind Ebenen mit Kongruenz wie in (6.4.1), die nicht affin sind
(siehe auch Kapitel 8). Wir geben hier nur „das“ Beispiel über den reellen Zahlen an, in
einer Beschreibung, die auf Felix Klein13 zurück geht.

Für den kommutativen Körper K betrachte vier kollineare Punkte aK, bK, cK, dK
in PG(2, K) . Durch Wahl der Vertreter a, b, c, d ∈ K3 können wir im Fall aK ̸= bK, cK
sowie bK ̸= cK, dK erreichen, dass gilt

c = a+ b und d = a+ bδ für ein eindeutig(!) bestimmtes δ ∈ K .

Wir nennen DV(aK, bK, cK, dK) := δ das Doppelverhältnis der gegebenen Punk-
te. Außerdem setzen wir DV(aK, bK, cK, bK) := ∞ und DV(aK, aK, cK, dK) := 1 .
Weitere spezielle Werte ergeben sich durch die Konvention 0−1 = ∞ und ∞−1 = 0 und

(7.1) (1) DV(aK, bK, cK, cK) = 1.

(2) DV(aK, bK, cK, dK) = DV(cK, dK, aK, bK).

(3) DV(aK, bK, cK, dK) = DV(bK, aK, cK, dK)−1 = DV(aK, bK, dK, cK)−1 .

Beweis. (1) ist offenbar, (3) folgt sofort aus der Darstellung dδ−1 = b+ aδ−1 und (2).
(2) Aus c = a+ b und d = a+ bδ folgt
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Das ist die Behauptung. ■
13Felix Klein 1849 - 1925
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Beispiel. In PG(2, K) betrachten wir die Gerade G , die durch x2 = 0 definiert ist. Die
Punkte haben die Form (1 : x : 0) und können mit x identifiziert werden. Den Punkt
(0 : 1 : 0) ∈ G schreiben wir ∞ . Für a, b, c, d ∈ K verschieden gilt

(1, c) = (1, a)(1− λ) + (1, b)λ mit λ =
c− a

b− a
und (1, d)µ = (1, a)(1− λ) + (1, b)λδ.

Dabei wurde die 2-Koordinate weggelassen. Es folgt

µ = (1− λ) + λδ und dµ = a(1− λ) + bλδ

Das ergibt

d
(
(1− λ) + λδ

)
= a(1− λ) + bλδ =⇒ δ =

(a− d)(1− λ)

(d− b)λ

=⇒ δ =
(a− d)(1− c−a

b−a
)

(d− b) c−a
b−a

=
(a− d)(b− a− (c− a))

(d− b)(c− a)
=

(a− d)(b− c)

(a− c)(b− d)
=

a−d
a−c
b−d
b−c

.

Daher der Name „Doppelverhältnis“. Diese Formel gilt auch wenn der Punkt ∞ vor-
kommt, indem man die üblichen Konventionen benutzt. Auch die Aussagen von (7.1)
sind leicht zu sehen.

Bemerkung. So wird das Doppelverhältnis z. B. in der Funktionentheorie eingeführt.
Es gibt eine Reihe weiterer äquivalenter Zugänge. Dabei ist die Definition nicht einheit-
lich. Häufig wird statt δ der Wert δ−1 verwendet. Alle abweichenden Definitionen in der
Literatur ergeben sich durch Permutation der Einträge in unserem DV .

Eine wichtige Eigenschaft ist

(7.2) Sei K ein kommutativer Körper.

(1) Jeder lineare Automorphismus von PG(2, K) läßt DV invariant.

Genauer: Sei M eine invertierbar 3× 3-Matrix, dann gilt

DV(MaK,MbK,McK,MdK) = DV(aK, bK, cK, dK).

(2) Jede Zentralkollineation ist linear, d. h. sie wird von einer linearen Abbildung indu-
ziert und läßt daher DV invariant.

Beweis. (1) ist offenbar. — (2) Aufgabe 35. ■

Im Folgenden spezialisieren wir den Körper zu R und denken uns stets AG(2,R)
kanonisch in (P,G) = PG(2,R) eingebettet, so dass das Doppelverhältnis auch für
kollineare Punkte aus R2 definiert ist. Sei (H,GH) der Inzidenzraum aus (1.1.11), d. h.
es sei

K :=
{
(x1, x2) ∈ R2 ; x21 + x22 = 1

}
und H :=

{
(x1, x2) ∈ R2 ; x21 + x22 < 1

}
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der Einheitskreis, bzw. dessen Inneres. Weiter sei

GH := {G ∩H ; G ∈ G mit G ∩H ̸= ∅} .

Die Geradenmenge besteht also aus den Sekanten von K , die somit je zwei Schnittpunkte
mit K haben. Insbesondere können wir Konstruktionen auch in R2 durchführen.

Die Kongruenz definieren wir wie folgt. Seien a, b ∈ H und seien u, v ∈ a, b
aff ∩K die

beiden Schnittpunkte der Verbindungsgerade von a, b in R2 mit K . Entsprechend seien
u′, v′ zu a′, b′ ∈ H erklärt. Wir setzen

(a, b) ≡ (a′, b′) ⇐⇒
{

DV(u, v, a, b) = DV(u′, v′, a′, b′) oder
DV(u, v, a, b) = DV(u′, v′, a′, b′)−1

}

⇐⇒
∣∣lnDV(u, v, a, b)

∣∣ =
∣∣lnDV(u′, v′, a′, b′)

∣∣ .

Mit (7.1.3) erkennt man, dass „≡“ wohldefiniert ist und

(7.3) „≡“ ist eine Kongruenzrelation auf (H,GH).

Beweis. (K1) ist klar, und (K2) folgt direkt aus (7.1.3).
Weil u, v, a verschieden sind, gilt DV(u, v, a, b) = 1 ⇐⇒ a = b. Das zeigt (K3). ■

Definition. Das Tripel (H,GH ,≡) heißt Kleinsches Modell der hyperbolischen
Ebene über R .

Ohne Beweis halten wir fest.

(7.4) Das Kleinsche Modell der hyperbolischen Ebene ist eine Ebene mit Kongruenz,
d.h. es gelten insbesondere die Axiome (W1)–(W3).

Wegen (7.2) lassen Zentralkollineationen von P , die K festhalten die Kongruenzrela-
tion invariant, induzieren also Bewegungen auf H . Wir betrachten nur einen Fall. Für
eine Sekante L ∈ G von K und u, v ∈ L ∩K sei p der Schnittpunkt der Tangenten an
K in den Punkten u, v. Dieser Punkt p heißt Pol zur Polaren L . Umgekehrt besitzt
auch jeder Punkt außerhalb von K eine Polare, die Sekante von K ist.

Sei nun L Achse einer Zentralkollineation φ ̸= id , die K festhält. Dann muss φ die
beiden Tangenten durch u und v festlassen (da u, v festbleiben, kann das Bild keinen
weiteren Schnittpunkt mit K haben). Daher ist der Pol p das Zentrum. Sei nun G eine
Sekante von K , die p enthält. Für die beiden Schnittpunkte s, t ∈ G ∩K gilt φ(s) = t
und φ(t) = s . Wegen (5.14.2) muss φ2 = id gelten — φ ist also eine Involution.

Zu fest gewähltem G existiert auch genau eine solche Zentralkollineation. Daher de-
finieren wir

Definition. Diese Involution wird Polarenspiegelung an L genannt und L̃ geschrie-
ben. Sie ist durch L eindeutig festgelegt.

(7.5) Mit den obigen Bezeichnungen gilt
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(1) L̃(K) = K und L̃ ist involutorische Bewegung von (H,GH ,≡).

(2) ∀x ∈ P \ L ∪ {p} : DV(p, p, x ∩ L, x, L̃(x)) = −1.

Beweis. (1) Die erste Tatsache erfordert Kenntnisse über Kegelschnitte in projektiven
Ebenen, die wir nicht zur Verfügung haben. Ein anderer Weg ist eine längliche, kompli-
zierte Rechnung.

Die anderen Eigenschaften von L̃ wurden oben gezeigt.
(2) Nach (7.2.2) und (7.1.3) gilt

δ := DV(p, p, x ∩ L, x, L̃(x)) = DV(p, p, x ∩ L, L̃(x), x) = δ−1,

also δ2 = 1. Wegen L̃(x) ̸= x gilt δ ̸= 1 , und die Behauptung folgt. ■

(7.6) Bemerkung. 1. Statt L̃ müsste man genauer die Restriktion L̃ H : H → H
betrachten. Diese Abbildung kann als Geradenspiegelung von (H,GH ,≡) aufgefasst
wegen.

Wir sprechen daher auch von hyperbolischen Geradenspiegelungen.

2. Die obige Konstruktion zeigt wie jedem Punkt p außerhalb von K eine Gerade π(p)
(eine Sekante von K ) zugeordnet wird. Tatsächlich kann π auf ganz P fortgesetzt
werden. Dabei ist für Punkte p ∈ K das Bild π(p) die Tangente an K in p und
Punkte aus H werden auf Passanten geworfen.

3. Die Abbildung π : P → G ist eine Kollineation von PG(2,R) auf den Dualraum
mit π ◦ π = id . Eine solche Abbildung wird Polarität genannt. (Das erlaubt eine
Konstruktion für Punkte in H !)

4. Aus (5.14) kann man ablesen, wie zu jedem Punkt von H der Bildpunkt konstruiert
werden kann. (Das wird in der Vorlesung ausgeführt.)

5. Punkte mit DV = −1 nennt man auch in harmonischer Lage.
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