

Da $\lambda, \nu \in K$ beliebig gewählt waren, folgt die Behauptung.

Koordinatisierung desarguesscher affiner Ebenen

Sei (A, \mathfrak{G}) eine desarguessche affine Ebene. Das Ziel ist es, einen Körper K so zu konstruieren, dass $(A, \mathfrak{G}) \cong AG(2, K)$ gilt (Umkehrung von (4.2)).

Seien $0, 1, 1' \in A$ drei nicht kollineare Punkte und $K = \overline{0, 1}, K' = \overline{0, 1'}, K'' = \{1' | K\}$ drei Geraden. Wir betrachten folgende Parallelperspektivitäten:

$$\pi': K \to K'; \ x \mapsto \{x | \overline{1,1'}\} \cap K' \quad \text{und} \quad \pi'': K \to K''; \ x \mapsto \{x | K'\} \cap K''.$$

Für $y \in K$ sei

$$\alpha_y: K \to K; \ x \mapsto \{\pi''(x) || \overline{1', y}\} \cap K$$

und

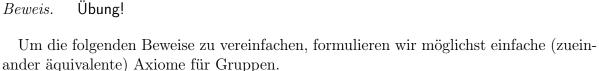
$$\mu_y: K \to K; \ x \mapsto \{\pi'(x) || \overline{1', y}\} \cap K.$$

Wir setzen $y + x := \alpha_y(x)$ und $y \cdot x := \mu_y(x)$.

(4.8) $\alpha_n(x)$ ist unabhängig von der Wahl von 1'.

Beweis.

äquivalent:



(4.9) Sei (G,\cdot) eine Menge mit einer assoziativen Verknüpfung und $e \in G$. Dann sind

- (I) e ist neutrales Element und $\forall a \in G : \exists a' \in G \text{ mit } a'a = e = aa'$
- (II) e ist linksneutral (d.h. $\forall a \in G : ea = a$) und $\forall a \in G : \exists a' \in G \text{ mit } a'a = e$.

(III) e ist rechtsneutral und $\forall a \in G \ \exists a' \in G \ mit \ aa' = e$.

Beweis. Wegen Symmetrie genügt es (II) " \Longrightarrow " (I) zu zeigen. Sei also $a \in G$, dann gilt

.....

.....

.....

Des weiteren gilt $ae = a \cdot a'a = aa' \cdot a = ea = a$.

Bemerkung. Das Lemma gibt äquivalente Definitionen einer Gruppe. Wir werden es im Folgenden stets ohne Hinweis verwenden.

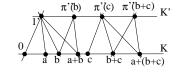
(4.10) (K,+) ist eine Gruppe mit neutralem Element 0.

Beweis. "+" ist assoziativ: Seien $a,b,c\in K$. Für

$$1', b, \pi''(b), a+b, \pi''(c), b+c, \pi''(b+c), a+(b+c)$$

 $\overline{1', a+b} \| \overline{\pi''(c), a+(b+c)}.$

ist der Scherensatz (4.4.3) anwendbar und dieser zeigt



Daher hat man

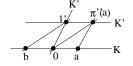
$$(a+b) + c = \alpha_{a+b}(c) = \alpha_a(b+c) = a + (b+c).$$

Nach Definition gilt $\alpha_0 = id$, d. h. 0 + x = x und 0 ist linksneutral.

Für ein $a \in K$ sei $b := \{1' | \overline{0, \pi''(a)}\} \cap K$, dann gilt

$$b + a = \alpha_b(a) = \{\pi''(a) || \overline{1', b}\} \cap K = \overline{0, \pi''(a)} \cap K = 0.$$

Somit ist b linksinvers zu a.



(4.11) Bemerkung. Die Beweise von (4.8) und (4.10) benutzen nur (Ad) in "Richtung K", d. h. die (Träger-)Geraden G_i sind parallel zu K. (AD) wurde nicht verwendet.

Sei $K^* = K \setminus \{0\}$. Analog zu (4.8) und (4.10), aber mit (AD) statt (Ad) zeigt man:

(4.12) (K^*, \cdot) ist eine Gruppe mit neutralem Element 1. Dabei ist μ_y für alle $y \in K$ unabhängig von der Wahl von 1'.

Beweis. Evt. Übung.

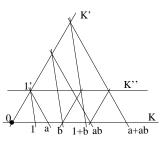
(4.13) Satz. $(K, +, \cdot)$ ist ein Körper.

Beweis. Wegen (4.10) und (4.12) sind nur noch die Distributivgesetze zu zeigen (die Kommutativität der Addition folgt dann). Zu $a, b \in K$ zeigen wir zunächst a(1+b) = a + ab. Wende (Ad) auf $ab, b, \pi'(b), \pi''(ab), \pi''(b), \pi''(1+b)$ an:

Dann gilt

$$\overline{\pi''(ab), \pi'(1+b)} \| \overline{\pi'(b), ab} \| \overline{1', a} \| \overline{\pi''(ab), a+ab}$$

und daher $a+ab=\{\pi'(1+b)||\overline{1',a}\}\cap K=a(1+b).$ Für $a,b,c\in K$ folgt das Linksdistributivgesetz:



$$a(b+c) = a(b(1+b^{-1}c)) = ab(1+b^{-1}c) = ab+abb^{-1}c = ab+ac.$$

Nun zeigen wir (1+b)a = a+ba: Sei $p = \{\pi'(a) || K\} \cap \overline{0,\pi''(b)}$. Wende (AD) an auf $1+b,1',\pi''(b),(1+b)a,\pi'(a),p$, somit $p,(1+b)a||1+b,\pi''(b)||\overline{1,1'}||a,\pi'(a)$. Auch die Punkte $b,1',\pi''(b),ba,\pi'(a),p$ erfüllen die Vorausset-

zungen von (AD) und wir erhalten $\overline{ba,p} \| \overline{b,\pi''(b)} \| K'$. Wegen (4.8) kann man a+ba mit $\pi'(a)$ statt mit 1' konstruieren, und man erhält

$$a + ba = \{p || \overline{a, \pi'(a)}\} \cap K = (1+b)a.$$

P K'' K K K (1+b)a

Daraus folgt das Rechtsdistributivgesetz analog.

$$(b+c)a = ((1+cb^{-1})b)a = (1+cb^{-1})ba = ba+cb^{-1}ba = ba+ca$$

Aus den Distributivgesetzen folgt auch die Kommutativität der Addition. Seien $a,b\in K,$ dann gilt

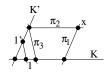
$$(a+b) + (a+b) = (a+b)(1+1) = (a+a) + (b+b),$$

nach Kürzen von a auf der linken Seite und von b auf der rechten ergibt sich b+a=a+b.

- (4.14) Bemerkung. 1. Für das Linksdistributivgesetz ist wieder nur (Ad) erforderlich. Der Beweis ist dann ohne Nutzung des Assoziativgesetzes zu führen.
- 2. Beim Beweis des Rechtsdistributivgesetzes wird (AD) wirklich benutzt.
- 3. Für die Assoziativität von "·" wird (AD) ebenfalls benötigt (nicht aber für die eindeutige Lösbarkeit von ax = b und ya = b nach x bzw. y).

Es bleibt zu zeigen, dass (A, \mathfrak{G}) und $A(K^2)$ isomorph sind. Betrachte dazu die Parallelprojektionen bzw. Parallelperspektivitäten

$$\pi_1: A \to K; x \mapsto \{x | K'\} \cap K
\pi_2: A \to K'; x \mapsto \{x | K\} \cap K'
\pi_3: K' \to K; x \mapsto \{x | \overline{1, 1'}\} \cap K$$



Die Abbildung

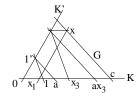
$$\varphi: A \to K^2; \ x \mapsto \Big(\pi_1(x), (\pi_3 \circ \pi_2)(x)\Big)$$

ist offenbar bijektiv.

(4.15) Satz. φ ist ein Isomorphismus.

Beweis. Sei $G \in \mathfrak{G}$.

- 1. Fall: G||K'|, d. h. $\forall x \in G$ gilt $c = \pi_1(x)$ ist konstant, also $\varphi(G) \subseteq \langle c \rangle$. Umgekehrt gilt $\forall c \in K \colon \varphi^{-1}(\langle c \rangle) \subseteq \pi_1^{-1}(c) ||K'|$.
- 2. Fall: G||K, d. h. $\forall x \in G$ gilt $\pi_2(x) = c' \in K'$ ist konstant, also $\varphi(G) \subseteq \langle 0, \pi_3(c') \rangle$. Umgekehrt gilt $\forall c \in K \colon \varphi^{-1}(\langle 0, c \rangle) \subseteq \pi_2^{-1}(\pi_3^{-1}(c))||K$.
 - 3. Fall: $G \not \mid K, K'$. Sei $c = K \cap G$ und $a = \{1' \mid G\} \cap K$. Für $x \in G$ setze $x_1 := \pi_1(x)$ und $x_2 := (\pi_3 \circ \pi_2)(x)$. Dann gilt $ax_2 + x_1 = c$, denn "+" kann wegen (4.8) auch mit $\pi_2(x)$ (statt mit 1') konstruiert werden. Somit



$$x \in G \implies x_2 = a^{-1}c - a^{-1}x_1 \implies \varphi(x) \in \langle -a^{-1}, a^{-1}c \rangle$$

Ist $\varphi(x) \in \langle -a^{-1}, a^{-1}c \rangle$, so erhält man $ax_2 + x_1 = c$ und $x \in G$. Insgesamt gilt also $\varphi(G) = \langle -a^{-1}, a^{-1}c \rangle$ und $\varphi^{-1}(\langle -a^{-1}, a^{-1}c \rangle) = \{c | \overline{a, 1'}\} \in \mathfrak{G}$.

Zusammenfassend erhalten wir den

(4.16) Darstellungssatz. Sei (A, \mathfrak{G}) eine desarguessche affine Ebene. Dann existiert ein Körper K so, dass $(A, \mathfrak{G}) \cong AG(2, K)$.

Hieraus folgt mit (4.5) und (4.7).

- (4.17) Satz. Jede pappussche affine Ebene ist isomorph zu AG(2, K) mit einem kommutativen Körper K. Genauer: Jeder koordinatisierende Körper ist kommutativ.
- (4.18) Satz. Jede endliche desarguessche affine Ebene ist pappussch.

Beweis. Wegen (4.16) wird die Ebene durch einen endlichen Körper koordinatisiert. Nach einem berühmten Satz von Wedderburn⁸(1905) ist jeder endliche Körper kommutativ. Wegen (4.7) gilt (AP).

(4.19) Bemerkung. Tatsächlich ist K aus (4.16) bis auf Isomorphie eindeutig bestimmt. Beweis später.

⁸Joseph Wedderburn 1882–1948

Schließungssätze in projektiven Ebenen

Definition. Eine projektive Ebene (P, \mathfrak{G}) heißt **desarguessch**, wenn das folgende **projektive Axiom von Desargues** erfüllt ist:

- (PD) Zu $G_1, G_2, G_3 \in \mathfrak{G}$, verschieden und kopunktal, sei $z = G_1 \cap G_2 \cap G_3$. Seien $a_i, b_i \in G_i \setminus \{\underline{z}\}$ verschieden. Dann liegen $\overline{a_i, a_j} \cap \overline{b_i, b_j}, i \neq j$, kollinear. Setzt man $p_k = \overline{a_i, a_j} \cap \overline{b_i, b_j}$ für $\{i, j, k\} = \{1, 2, 3\}$, so gilt also $p_3 \in L := \overline{p_1, p_2}$.
- z heißt **Zentrum**, L heißt **Achse** der Desargues-Konfiguration.

Die Konfiguration heißt "kleiner projektiver Desargues" (Pd), wenn $z \in L$.

Eine projektive Ebene heißt **Moufang-Ebene**⁹, wenn stets (Pd) gilt.

Eine projektive Ebene (P, \mathfrak{G}) heißt **pappussch**, wenn das folgende **projektive Axiom von Pappos** erfüllt ist:

- (PP) Sei $G_1, G_2 \in \mathfrak{G}$ mit $z = G_1 \cap G_2$ und $a_1 \dots a_6 \in P$, verschieden, mit $\underbrace{a_1, a_3, a_5 \in G_1 \setminus \{z\}}_{a_2, a_3}$ und $\underbrace{a_2, a_4, a_6 \in G_2 \setminus \{z\}}_{a_1, a_6}$. Dann liegen die Punkte $\overline{a_1, a_2} \cap \overline{a_4, a_5}$, $\overline{a_2, a_3} \cap \overline{a_5, a_6}$, $\overline{a_1, a_6} \cap \overline{a_3, a_4}$ kollinear.
- (4.20) Bemerkung. 1. Die Figur des Axioms (PD) ist in hohem Maße symmetrisch. Erwähnt seien
 - Sie besteht aus 10 Punkten und 10 Geraden.
 - Jeder Punkt kann Zentrum, jede Gerade Achse sein.
 - Die Figur ist selbstdual.
- 2. Ist (P, \mathfrak{G}) eine desarguessche bzw. pappussche projektive Ebene, so ist P_L offenbar desarguessch bzw. pappussch für jedes $L \in \mathfrak{G}$. Ist P eine Moufang-Ebene, so gilt (Ad) in jedem P_L . Dass teilweise (aber nicht immer) die Umkehrungen gelten, werden wir noch sehen.
- (4.21) Satz. Für einen Körper K ist PG(2, K) stets desarguessch. Ferner ist PG(2, K) genau dann pappussch, wenn K ist kommutativ ist.

Beweis. Übung.

(4.22) Darstellungssatz. Sei (P, \mathfrak{G}) eine desarguessche projektive Ebene, dann existiert ein Körper K so, dass (P, \mathfrak{G}) und PG(2, K) isomorph sind.

Beweis. Zu $L \in \mathfrak{G}$ betrachte die desarguessche affine Ebene P_L . Nach (4.16) existiert ein Körper K mit $P_L \cong \mathrm{AG}(2,K)$. Der projektive Abschluss von P_L ist einerseits nach (3.3.3) (vgl. Aufgabe 17) isomorph zu (P,\mathfrak{G}) , andererseits nach (3.11.3) isomorph zu $\mathrm{PG}(2,K)$.

(4.23) Satz. Jede pappussche projektive Ebene (P, \mathfrak{G}) ist desarguessch und kann durch einen kommutativen Körper K koordinatisiert werden.

⁹Ruth Moufang 1905–1977

Beweis. Sei eine Konfiguration wie in (PD) gegeben. Setze $L = \overline{p_1, p_2}$. Zu zeigen ist $p_3 \in L$. Die affine Ebene P_L ist pappussch, also nach dem Satz von Hessenberg (4.5) desarguessch. Daraus folgt $p_3 \in L$. Wegen (4.17) (oder (4.7)) ist K kommutativ.

(4.24) Satz. Sei (P, \mathfrak{G}) eine projektive Ebene und $L \in \mathfrak{G}$ beliebig. Dann gilt:

 $P \ desarguessch \ (pappussch) \iff P_L \ desarguessch \ (pappussch)$

Speziell ist der projektive Abschluss einer affinen desarguesschen (pappusschen) Ebene wieder desarguessch (pappussch).

Beweis. Nur " $\Leftarrow=$ " ist zu zeigen: Sei P_L desarguessch (pappussch). Wegen (4.16) bzw. (4.17) ist $P_L \cong AG(2, K)$ für einen (kommutativen) Körper K. Dann gilt $P \cong PG(2, K)$ und wegen (4.21) ist P desarguessch (pappussch).

Direkt aus (4.18) und (4.24) ergibt sich

(4.25) Satz. Jede endliche desarguessche projektive Ebene ist pappussch.

- (4.26) Bemerkung. (1) Eine zu (4.24) analoge Aussage mit (Ad) und (Pd) ist falsch. Genauer: Die affine Ebene $A(F^2)$ über einem planaren Fastkörper F erfüllt (Ad). Wenn F kein Körper ist, so ist der projektive Abschluss P aber keine Moufangebene. Wenn H die Ferngerade bezeichnet, so gilt (Pd) nur für die Achse H.
- (2) Bildet man in der obigen Bemerkung P_G mit einer Geraden $G \neq H$, so ist $P_G \ncong P_H$. Evt. Übung und (3.5.3)
- (3) Aus (PD) folgt nach (4.4.2) wie im Beweis von (4.23) die zu (PD) duale Aussage (PD'). (Beachte: Die Figur ist dieselbe wie für (PD)!).

Durch Übergang zur dualen Ebene erkennt man, dass auch (PD') \implies (PD) gilt. Das liefert einen gültigen Beweis für (AD') \implies (AD). Außerdem zeigt es, dass die Klasse der desarguesschen projektiven Ebenen **selbstdual** ist, d. h. auch die duale Ebene ist wieder desarguessch. Daher ist das Dualitätsprinzip (3.10) auf diese Klasse anwendbar.

- (4) Man kann zeigen, dass auch die Klasse der pappusschen projektiven Ebenen selbstdual ist.
- (5) Die Konstruktion des Körpers geht auf Hilbert¹⁰ (1899) zurück. Nach Hilbert wird sie auch **Streckenrechnung** genannt. Später wurden mit modifizierten Methoden auch nichtdesarguessche Ebenen koordinatisiert (mit sog. **Ternärkörpern** (Hall 1943)¹¹).

 $^{^{10}}$ David Hilbert 1862-1943

 $^{^{11}\}mathrm{Marshall}$ Hall Jr $^{1910-1990}$