2 Affine Ebenen

Definition. Ein Inzidenzraum (A, \mathfrak{G}) heißt **affine Ebene**, wenn gilt:

- (P) (Parallelenaxiom) $\forall G \in \mathfrak{G}, x \in A \setminus G, \exists ! H \in \mathfrak{G} \text{ mit } x \in H \text{ und } G \cap H = \varnothing.$
- (E3) Es gibt drei nicht kollineare Punkte.

Sei (A, \mathfrak{G}) eine affine Ebene. Geraden G, H heißen **parallel**, geschrieben G | H, wenn G = H oder $G \cap H = \emptyset$. Für $x \in A$ und $G \in \mathfrak{G}$ bezeichne $\{x | | G\}$ die (wegen (P) eindeutig bestimmte) Parallele zu G durch x.

(2.1) In jeder affinen Ebene ist \parallel eine Äquivalenzrelation auf \mathfrak{G} .

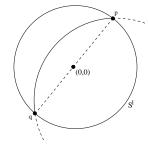
Beweis. Reflexivität und Symmetrie sind durch die Definition bereits gegeben. Zu prüfen ist noch die Transitivität. Für $G, H, K \in \mathfrak{G}$ gelte $G \| H$ und $H \| K$. Im Fall $G \cap K = \emptyset$ ist nichts zu zeigen. Sei also $G \cap K \neq \emptyset$, etwa $x \in G \cap K \implies G = \{x \| H\} = K$.

Definition. Sei (A, \mathfrak{G}) eine affine Ebene. Für $G \in \mathfrak{G}$ bezeichne $[G] := \{K \in \mathfrak{G} ; K || G\}$ die Äquivalenzklasse von G in \mathfrak{G} bzgl. $\|$. Mit $\mathfrak{G}/\| := \{[G]; G \in \mathfrak{G}\}$ werde wie üblich die Menge aller Äquivalenzklassen bezeichnet.

- (2.2) Beispiele. (1) Der Inzidenzraum (P, \mathfrak{G}) aus (1.1.1) ist die kleinstmögliche affine Ebene (genannt Minimalmodell), d.h. es gibt keine affine Ebene (A, \mathfrak{G}') mit |A| < |P|.
- (2) Der Inzidenzraum aus (1.1.3) ist ebenfalls eine affine Ebene. Es gibt vier Klassen paralleler Geraden (also $|\mathfrak{G}/|| = 4$).
- (3) Für einen Körper K sei $\mathfrak{G} := \{a + bK : a \in K^2, b \in K^2 \setminus \{0\}\}$. Dann ist $AG(2,K) := (K^2,\mathfrak{G})$ eine affine Ebene. Diese hatten wir in (1.1.7) **affine Ableitung** von K^2 genannt. Wir sprechen auch von der **affinen (Koordinaten-)Ebene** über K.

Beweis. (I1), (I2) aus (1.1.6).

- (E3) ist klar (z.B. (0,0), (0,1), (1,0) sind nicht kollinear).
- (P) Sei $x \in K^2$ und $G = a + bK \in \mathfrak{G}$ mit $x \notin G$. Dann folgt $x + bK \cap a + bK = \varnothing$. Um die Eindeutigkeit zu zeigen ist $x + cK \cap a + bK \neq \varnothing$ für $cK \neq bK$ (also b, c linear unabhängig) nachzuweisen. Gesucht sind also Lösungen (λ, μ) für $x + c\lambda = a + b\mu$ (bzw. äquivalent: $c\lambda b\mu = a x$). Da (b, c) eine Basis des K^2 ist, existieren die λ, μ eindeutig. Somit gilt $|x + cK \cap a + bK| = 1 \neq 0$.
- (4) Sei $D:=\{x\in\mathbb{R}^2\,;\,\|x\|<1\}$ die offene Einheitskreisscheibe im \mathbb{R}^2 und $\mathbb{S}^1:=\{x\in\mathbb{R}^2\,;\,\|x\|=1\}$ ihr Rand. Sei weiter \mathcal{K} die Menge aller Kreise und Geraden in \mathbb{R}^2 , die \mathbb{S}^1 symmetrisch zum Ursprung schneiden, d.h. es gibt zwei Schnittpunkte p,q und es gilt q=-p. Sei $\mathfrak{G}:=\{K\cap D\,;\,K\in\mathcal{K}\}$, dann ist (D,\mathfrak{G}) eine affine Ebene.

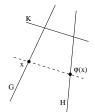


(2.3) Sei (A, \mathfrak{G}) eine affine Ebene und $G, H \in \mathfrak{G}$ mit $G \cap H = x \in A$, dann gilt

$$\forall G' \in [G], H' \in [H] : |G' \cap H'| = 1.$$

Beweis. Angenommen $|G' \cap H'| \neq 1$, also G' = H' oder $G' \cap H' = \emptyset$, d.h. $G' \| H'$. Wegen $G \| G', H \| H'$ folgt mit (2.1) $G \| H$, im Widerspruch zu $G \cap H = x$.

(2.4) Sei (A, \mathfrak{G}) eine affine Ebene und $G, H, K \in \mathfrak{G}$ mit $G, H \not \mid K$. Dann gelten:



- (1) $\varphi: G \to H$; $x \mapsto \{x || K\} \cap H$ ist eine Bijektion, genannt **Parallelperspektivität** (mit **Richtung** K).
- (2) |G| = |H| = |[G]|

Beweis. (1) φ ist wohldefiniert wegen (2.3) (\Longrightarrow $|\{x||K\}\cap H|=1$). Injektivität: Zu $x,y\in G$ sei

$$\varphi(x) = \varphi(y) \implies \{x | K\} = \{\varphi(x) | K\} = \{\varphi(y) | K\} = \{y | K\}$$
$$\implies x = \{x | K\} \cap G = \{y | K\} \cap G = y \pmod{G \nmid K}.$$

Surjektivität: Sei $z \in H$ und

$$y := \{z | K\} \cap G \implies \varphi(y) = \{y | K\} \cap H = \{z | K\} \cap H = z.$$

(2) |G| = |H| folgt aus (1). Natürlich kann man ebenso |K| = |G| zeigen. Betrachte die Abbildung $\psi : [G] \to K; \ G' \mapsto G' \cap K$. ψ ist wohldefiniert, denn $|G \cap K| = 1 \implies \forall G' \in [G] : |G' \cap K| = 1 \text{ (wegen (2.3))}$. ψ ist injektiv: sei $\psi(G_1) = \psi(G_2)$ für $G_1, G_2 \in [G]$. Dann gilt

$$G_1 = \{\psi(G_1) || G\} = \{\psi(G_2) || G\} = G_2 \implies G_1 = G_2.$$

 ψ ist surjektiv: sei $p \in K$. Dann ist $G' = \{p || G\} \in [G]$ und es gilt $\psi(G') = p$. Also ist ψ eine Bijektion $[G] \to K$, und es gilt |[G]| = |K| = |G| = |H|.

Definition. Sei (A, \mathfrak{G}) eine affine Ebene, dann heißt |G| für $G \in \mathfrak{G}$ die **Ordnung** von A, bezeichnet mit ord A = |G|. Die Wohldefiniertheit ist durch (2.4) sichergestellt.

- (2.5) Beispiele. (1) Beispiel (2.2.1) bzw. (1.1.1) hat ord = 2.
 - (2) Beispiel (2.2.2) bzw. (1.1.3) hat ord = 3.
 - (3) $\operatorname{ord}(AG(2,\mathbb{R})) = |\mathbb{R}|$, also (überabzählbar) unendlich.
 - (4) Im Inzidenzraum von Beispiel (1.1.5) ist für $n \geq 3$ keine Ordnung definiert.
- **(2.6) Satz.** Sei (A, \mathfrak{G}) eine affine Ebene der Ordnung $q \in \mathbb{N}$. Für alle $x \in A$ und alle $G \in \mathfrak{G}$ gilt dann
- (0) |G| = q

(1)
$$|[G]| = q$$

(2)
$$|\{H \in \mathfrak{G} ; x \in H\}| = q + 1$$

(3)
$$|A| = q^2$$

(4)
$$|(\mathfrak{G}/\|)| = q + 1$$

(5)
$$|\mathfrak{G}| = q^2 + q$$

Beweis. (0) nach Definition von ord. (1) nach (2.4.2).

(2) Wähle $K \in \mathfrak{G}$ mit $x \notin K$. Für alle $y \in K$ ist $\overline{x}, \overline{y}$ eine Gerade durch x, dazu kommt $\{x | K\}$, so dass es mindestens q+1 Geraden durch x gibt. Da jede Gerade durch x entweder parallel zu K ist oder K trifft, sind es genau q+1.

(3) [G] ist eine Partition von A, d. h. $A = \bigcup_{K \in [G]} K$ und für $K, K' \in [G]$ gilt K = K' oder $K \cap K' = \emptyset$. Daraus folgt

$$|A| = \sum_{K \in [G]} |K| = q \cdot q = q^2.$$

(4) Sei $x \in A$ fest. Zu $H, H' \in \{K \in \mathfrak{G} \; ; \; x \in K\}$ sind

$$[H], [H'] \in \mathfrak{G}/\| \quad \text{und} \quad H \neq H' \implies [H] \neq [H'].$$

Somit gibt es mindestens q+1 Parallelklassen. In jeder Parallelklasse gibt es ein Element, das durch x läuft, also sind es genau q+1.

(5)
$$|\mathfrak{G}| = |\mathfrak{G}/\| |\cdot| [G]| = (q+1) \cdot q = q^2 + q$$
.

Seien (A, \mathfrak{G}) eine affine Ebene und $G, K \in \mathfrak{G}$ mit $G \not \mid K$. Die (offensichtlich wohldefinierte und surjektive) Abbildung

$$\pi: A \to G; \ x \mapsto \{x | K\} \cap G$$

heißt Parallelprojektion (mit Richtung K).

Seien (A,\mathfrak{G}) eine affine Ebene, $G,H\in\mathfrak{G}$ und $z\in A\setminus (G\cup H)$. Für $G\not\parallel H$ sei $q:=\{z\|G\}\cap H$ und $p:=\{z\|H\}\cap G$. Die bijektive Abbildung

$$\xi: G \setminus \{p\} \to H \setminus \{q\}; \ x \mapsto \overline{x, z} \cap H$$

heißt zentrale Perspektivität. Für $G \| H$ ist

$$\xi: G \to H; \ x \mapsto \overline{x, z} \cap H$$

 $wohlde finiert\ und\ bijektiv\ (und\ heißt\ ebenfalls\ {\bf zentrale}\ {\bf Perspektivit\"{a}t}).$

Bemerkung. Die Herausnahme der Punkte p,q stellt sicher, dass ξ im Fall $G \not\parallel H$ wohldefiniert, d. h. jeder Punkt aus $G \setminus \{p\}$ hat ein Bild, und surjektiv ist, d. h. jeder Punkt aus $H \setminus \{q\}$ hat ein Urbild.

Durch die Hinzunahme von neuen Punkten und einer neuen Geraden zur affinen Ebene (A, \mathfrak{G}) kann bei der zentralen Perspektivität auf die lästigen Ausnahmepunkte und die Fallunterscheidung verzichtet werden.

Definition. Der **projektive Abschluss** (P, \mathfrak{G}') einer affinen Ebene (A, \mathfrak{G}) ist folgendermaßen definiert: ergänze jede Gerade $G \in \mathfrak{G}$ um einen Punkt [G], genannt **Fernpunkt** von G, also $G' := G \cup \{[G]\}$. (Beachte, dass parallele Geraden denselben Fernpunkt bekommen!) Weiter sei $F := \mathfrak{G}/\| = \{[G]; G \in \mathfrak{G}\}$ eine zusätzliche Gerade, genannt **Ferngerad**e. Dann sei

$$(P, \mathfrak{G}') := \left(A \cup F, \left\{G \cup \left\{[G]\right\}; G \in \mathfrak{G}\right\} \cup \left\{F\right\}\right).$$

Bemerkung. (1) Im Beispiel (1.1.1) ergibt sich das Beispiel (1.1.4).

- (2) Im Beispiel (2.2.4) kann man sich die Fernpunkte als Punkte auf \mathbb{S}^1 vorstellen.
- (2.7) Der projektive Abschluss (P, \mathfrak{G}') einer affinen Ebene (A, \mathfrak{G}) ist ein Inzidenzraum mit den Eigenschaften:
- (1) $\forall G' \in \mathfrak{G}' \text{ gilt } |G'| \geq 3$.
- (2) $\forall G', H' \in \mathfrak{G}', G' \neq H', \ qilt \ |G' \cap H'| = 1.$

Beweis. (I1) Seien $x, y \in P, x \neq y$.

- 1. Fall: $x,y\in A \implies \overline{x,y}\cup\{\overline{[x,y]}\}$ ist eine Verbindungsgerade, da aber $x,y\not\in F$ ist es auch die einzige.
- 2. Fall: $x \in A, y \notin A \implies y = [G]$ für $G \in \mathfrak{G}$ und wegen (P) ist $\{x || G\} \cup \{[G]\}$ die Verbindungsgerade.
 - 3. Fall: $x, y \notin A \implies x, y \in F$ und F ist die Verbindungsgerade von x, y in P.
- (I2) und (1) sind klar, denn (2.6.0) zeigt $\forall G \in \mathfrak{G} : |G \cup \{[G]\}| \geq 3$ und aus (2.6.4) folgt $|F| \geq 3$.
- (2) 1. Fall: $G' \neq F \neq H'$. Seien $G, H \in \mathfrak{G}$ mit $G' = G \cup \{[G]\}$, $H' = H \cup \{[H]\}$. Dann folgt entweder $G \parallel H$ und $G' \cap H' = [G]$ (= [H]) oder $G \not\parallel H$ und $|G \cap H| = 1$ (beachte $[G] \neq [H]$).
 - 2. Fall: oE. H' = F. Dann folgt $G' \cap H' = G' \cap F = [G]$.