Präsenzaufgaben

- **30.** Eine Struktur $(F, +, \cdot)$ heißt **Fastkörper**, wenn alle Körperaxiome bis auf das Rechtsdistributivgesetz und außerdem 0a = 0 gelten. F heißt **planar**, wenn die Gleichung x = ax + b für alle $a, b \in F, a \neq 1$, eine Lösung $x \in F$ besitzt. Für jeden Fastkörper F gilt
 - (a) a0 = 0 und a(-1) = -a für alle $a \in F$.
 - (b) Die Gleichung x = ax + b, $a, b \in F, a \neq 1$, besitzt höchstens eine Lösung.
 - (c) Endliche Fastkörper sind planar.
- **31.** Es sei $(F, +, \cdot)$ ein planarer Fastkörper. $A(F^2) := (F^2, \mathfrak{G})$ mit \mathfrak{G} genau wie in Aufgabe 11 ist eine affine Ebene.

Hausaufgaben

32. Es sei $F = \mathbb{Z}_3 \times \mathbb{Z}_3 = \{(a_1, a_2); a_1, a_2 \in \mathbb{Z}_3\}$. Wir definieren für $(a_1, a_2), (b_1, b_2) \in F$:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \circ (b_1, b_2) = \begin{cases} (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1) & \text{für } a_1a_2 = 0\\ (a_1b_1 + a_2b_2, -a_1b_2 + a_2b_1) & \text{für } a_1a_2 \neq 0 \end{cases}$$

Dann ist $(F, +, \circ)$ ein planarer Fastkörper, der kein Körper ist.

Hinweis: Man kann die Links-Multiplikation durch Matrizen beschreiben.

- **33.** Es sei $(F, +, \cdot)$ ein planarer Fastkörper und $A(F^2)$ die affine Ebene über F, wie in Aufgabe 31.
 - (a) Für $v \in F^2$ ist die Abbildung $\tau_v : F^2 \to F^2$; $x \mapsto x + v$ eine Translation.
 - (b) $A(F^2)$ erfüllt (Ad).
 - (c) Wenn F kein Körper ist, dann ist (AD) in $A(F^2)$ verletzt. **Tipp:** Wähle Punkte $z=(0,0),\ a_1=(1,1),\ a_2=(1,0),\ a_3=(0,\alpha),\ b_2=(\gamma,0),$ mit geeigneten $\alpha,\gamma\in F$.
- **34.** Es sei die affine Ebene $(\mathbb{C}^2, \mathfrak{G}) = \mathrm{AG}(2, \mathbb{C})$ über den komplexen Zahlen gegeben. Für die Abbildungen (mit $u \mapsto \overline{u}$ als dem Übergang zum konjugiert Komplexen)

$$\alpha: \mathbb{C}^2 \to \mathbb{C}^2; \ (a_1, a_2) \mapsto (\overline{a_1}, a_2) \quad \text{und} \quad \beta: \mathbb{C}^2 \to \mathbb{C}^2; \ (a_1, a_2) \mapsto (\overline{a_1}, \overline{a_2})$$

beweisen oder widerlegen Sie

- (a) α ist Affinität;
- (b) β ist Affinität;
- (c) α bzw. β ist lineare Abbildung des Vektorraums (\mathbb{C}^2, \mathbb{C})?
- (d) Ist eine der Abbildungen semilinear?