Präsenzaufgaben

- **20.** Sei (A, \mathfrak{G}) eine affine Ebene und Δ die Gruppe der Dilatationen. $\tau \in \Delta$ heißt **Translation**, wenn $\tau = \text{id}$ oder τ keine Fixpunkte besitzt $(\text{d. h. } \forall x \in A : \tau(x) \neq x)$. Die Menge aller Translationen sei mit T bezeichnet.
 - (a) Es seien $\delta \in \Delta$ und $a \in A$ mit $\delta(a) \neq a$. Dann gilt $\delta\left(\overline{a, \delta(a)}\right) = \overline{a, \delta(a)}$.
 - (b) Es seien $\tau \in T \setminus \{id\}$ und $a, b \in A$, dann gilt $H := \overline{a, \tau(a)} \parallel \overline{b, \tau(b)}$.
 - (c) Folgern Sie, dass

$$\forall G \in \mathfrak{G} : \tau(G) = G \iff G \in [H]$$

H oder auch [H] heißt die **Richtung** von τ .

- (d) Zu $a, b \in A$ existiert höchstens ein $\tau \in T$ mit $\tau(a) = b$. **Tipp:** Konstruieren Sie zunächst das Bild für einen Punkt $c \in A \setminus \overline{a, b}$.
- (e) Mit $\tau \in T$ ist auch τ^{-1} eine Translation und hat dieselbe Richtung wie τ .
- (f) Δ ist ein Normalteiler in Aut (A, \mathfrak{G}) , d. h. Δ ist eine Untergruppe von Aut (A, \mathfrak{G}) und für $\delta \in \Delta$, $\alpha \in \text{Aut}(A, \mathfrak{G})$ gilt $\alpha^{-1}\delta\alpha \in \Delta$.
- (g) $^{\clubsuit}$ T ist ein Normalteiler von Aut (A, \mathfrak{G}) und von Δ .
- **21.** Wahr oder falsch?
 - (a) Es gibt eine affine Ebene der Ordnung q, dann gibt es auch eine projektive Ebene der Ordnung q.
 - (b) Es gibt eine affine Ebene der Ordnung 12.
 - (c) In jeder affinen Ebene gilt der Satz von Desargues.

Hausaufgaben

22. In jeder desarguesschen affinen Ebene (A, \mathfrak{G}) gilt der *Scherensatz* (4.4.3):

Es seien $G_1, G_2 \in \mathfrak{G}$ und $a_i, b_i \in A$ mit $i \in \{1, 2, 3, 4\}$ acht Punkte mit $a_1, a_3, b_1, b_3 \in G_1$ und $a_2, a_4, b_2, b_4 \in G_2$ sowie $a_i, b_i \notin G_1 \cap G_2$. Dann folgt aus $\overline{a_1, a_2} \parallel \overline{b_1, b_2}, \overline{a_2, a_3} \parallel \overline{b_2, b_3}$ und $\overline{a_3, a_4} \parallel \overline{b_3, b_4}$ auch $\overline{a_1, a_4} \parallel \overline{b_1, b_4}$.

- **23.** Gegeben sei $(A, \mathfrak{G}) = AG(2, K)$ mit einem Körper K.
 - (a) Für jedes $v \in A$ ist die Abbildung $\tau_v : A \to A; x \mapsto x + v$ eine Translation.
 - (b) Es seien $a, b \in A$. Geben Sie eine Translation σ an mit $\sigma(a) = b$.
 - (c) Zeigen Sie unter Nutzung geeigneter Translationen, dass (Ad) (vgl. (4.4.1)) in (A, \mathfrak{G}) gilt.
 - (d) Betrachte nun die Anschauungsebene, es sei also $K=\mathbb{R}$. Es sei ϱ die Translation mit $\varrho(-1,1)=(2,-1)$. Bestimmen Sie $\varrho(1,1)$ und $\varrho(\frac{1}{2},0)$
 - i. konstruktiv, indem Sie eine geeignete Skizze anfertigen;
 - ii. rechnerisch.
- **24.** Gegeben sei die Moulton-Ebene (\mathbb{R}^2 , \mathfrak{G}) (vgl. (4.3) der Vorlesung) und $a \in \mathbb{R}$. Sei τ eine Translation mit $\tau(0,0) = (0,a)$.
 - (a) Finden Sie $\tau(1, -a)$.
 - (b) Bestimmen Sie $\tau(2,0)$ auf zwei Weisen: Mit Hilfe der Punkt-Bildpunkt-Paare (0,0), (0,a) bzw. $(1,-a), \tau(1,-a)$. Folgern Sie a=0.
 - (c) Fertigen Sie eine Skizze im Fall a=2 an und identifizieren Sie eine kleine Desagrueskonfiguration, die sich nicht schließt.
 - (d) Die Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (x_1 + a, x_2)$ ist eine Translation.