Präsenzaufgaben

14. Es sei (P, \mathfrak{G}) ein endlicher Inzidenzaum mit gleichmächtigen Geraden. Es sei

$$|P|=v, \quad |\mathfrak{G}|=b, \quad |G|=k \quad \text{für } G\in \mathfrak{G}\,, \qquad |\overline{x}\,|=|\{G\in \mathfrak{G}\,;\; x\in G\}|=r_x \quad \text{für } x\in P\,.$$

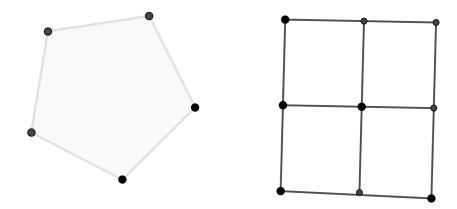
Zeigen Sie

- (a) $r := r_x$ ist konstant (d. h. unabhängig von x) und es gilt: $(v-1) = r \cdot (k-1)$ und vr = kb.
- (b) Es sei $x \in P$ und $G \in \mathfrak{G}$ mit $x \notin G$ gegeben. Dann ist

$$s = |\{H \in \mathfrak{G} ; x \in H \text{ und } G \cap H = \emptyset\}|$$

konstant. Bestimmen Sie s in Abhängigkeit von den anderen Parametern.

- (c) Für k=3 ist v ungerade, und es gilt stets $v(v-1) \in 6\mathbb{N}$.
- 15. Gegeben seien die untenstehenden Inzidenzstrukturen. Welche davon sind Inzidenzräume? Skizzieren Sie jeweils die duale Inzidenzstruktur.



- **16.** Wahr oder falsch?
 - (a) Die duale Inzidenzstrutur einer dualen Inzidenzstrutur ist die Ausgangsstruktur.
 - (b) Es gibt eine projektive Ebene der Ordnung 101.
 - (c) Es gibt eine affine Ebene der Ordnung 86.

Hausaufgaben

17. Es sei (P, \mathfrak{G}) eine projektive Ebene und $F \in \mathfrak{G}$. Wir betrachten die affine Ebene (P_F, \mathfrak{G}_F) wie in (3.3) und ihren projektiven Abschlusses (P'_F, \mathfrak{G}'_F) . Geben Sie eine Kollineation $\sigma : P \to P'_F$ an und verifizieren Sie, dass σ tatsächlich eine Kollineation ist.

Hinweis: Wenn man kollineare Punkte in P betrachtet, kann man drei Fälle unterscheiden, je nachdem wie die Punkte zu F liegen.

- 18. Seien (P, \mathfrak{G}) eine projektive Ebene $G, H \in \mathfrak{G}, G \neq H$, und $z \in P \setminus (G \cup H)$. Zeigen Sie
 - (a) Die Abbildung $\zeta: G \to H; x \mapsto \overline{x,z} \cap H$ ist bijektiv.
 - (b) |G| = |H|.
 - (c) Sei nun $q \in \mathbb{N}$ die Ordnung von P, und $x \in P$. Zeigen Sie direkt (ohne Rückgriff auf Aussagen über affine Ebenen oder Dualität, aber mit Hilfe der Aufgabe 14)
 - (i) $|G| = q + 1 = |\{G \in \mathfrak{G} : x \in G\}|$; (ii) $|P| = q^2 + q + 1 = |\mathfrak{G}|$.
- 19. Es sei (P, \mathfrak{G}) ein endlicher Inzidenzaum mit gleichmächtigen Geraden, d.h. $\forall G \in \mathfrak{G} : |G| = k$. Zeigen Sie (auch hier kann Aufgabe 14 helfen)
 - (a) Gilt k > 2 und $(|\overline{x}| \le k$ für alle $x \in P$ oder $|P| = k^2 k + 1)$, dann ist (P, \mathfrak{G}) eine projektive Ebene mit ord P = k 1.
 - (b) Gilt $|\overline{x}| = k + 1$ für alle $x \in P$, dann ist (P, \mathfrak{G}) eine affine Ebene mit ord P = k.
 - (c) Untersuchen Sie den Fall k = 2 unter (a).