Präsenzaufgaben

- **8.** Sei (P, \mathfrak{G}) der near-pencil mit n = 6 wie in (1.1.5).
 - (a) Skizzieren Sie (P, \mathfrak{G}) .
 - (b) Bestimmen Sie alle Automorphismen von (P, \mathfrak{G}) (mit Begründung).
- **9.** Sei (A, \mathfrak{G}) eine affine Ebene. Ein Automorphismus σ von A heißt Dilatation, wenn für alle $G \in \mathfrak{G}$ gilt $\sigma(G) \parallel G$. Zeige
 - (a) Für jeden Automorphismus σ von A und alle $G, H \in \mathfrak{G}$ gilt $G \parallel H \iff \sigma(G) \parallel \sigma(H)$.
 - (b) Die Menge Δ aller Dilatationen bildet ein Untergruppe von Aut (A, \mathfrak{G}) .
 - (c) Eine Dilatation mit mindestens zwei Fixpunkten ist die Identität.
- **10.** Wahr oder falsch?
 - (a) Für jede invertierbare Matrix aus \mathbb{R}^2 ist die Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$; $x \mapsto Ax$ eine Kollineation.
 - (b) In jedem Inzidenzraum sind alle Geraden gleichmächtig.
 - (c) Parallele Geraden schneiden sich im Unendlichen.
 - (d) Die Umkehrung einer zentralen Perspektivität ist ebenfalls eine zentrale Perspektivität.

Hausaufgaben

11. Sei K ein Körper und für $m, c \in K$ seien

$$\langle m, c \rangle := \{ (x_1, x_2) \in K^2; \ x_2 = mx_1 + c \}, \quad \langle c \rangle := \{ (x_1, x_2) \in K^2; \ x_1 = c \}$$

 $\quad \text{und} \quad \mathfrak{G} := \{ \langle m, c \rangle \, ; \, m, c \in K \} \cup \{ \langle c \rangle \, ; \, c \in K \}.$

Zeigen Sie

- (a) $A(K^2) := (K^2, \mathfrak{G})$ ist eine affine Ebene, die **affine Koordinatenebene** über K.
- (b) $A(K^2)$ ist isomorph zu AG(2, K). (Tatsächlich sind die Geradenmengen sogar gleich!)

Zwei **Sonderpunkte**, wenn Sie die Beweise so führen, dass sie auch für nicht kommutative Körper gelten.

- 12. Sei K ein Körper. Zeigen Sie in den folgenden Fällen, dass die Abbildung $\sigma: K^2 \to K^2$ ein Automorphismus von AG(2,K) ist, und entscheiden Sie ob σ eine Dilatation ist.
 - (a) $t \in K^2$ und $\sigma(x) := x + t$;
 - (b) $\alpha, \beta \in K \setminus \{0\}$ und $\sigma(x_1, x_2) = (\alpha x_1, \beta x_2)$;

(c)
$$K = \mathbb{Q}$$
 und $\sigma(x_1, x_2) = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$;

(d)
$$K = \mathbb{C} \text{ und } \sigma(x_1, x_2) = (\bar{x}_1, \bar{x}_2).$$

Hinweis: Nutzen Sie (1.3)(II) für den Nachweis der Kollineations-Eigenschaft.

- 13. Im Beweis zu Satz (1.3) der Vorlesung steckt ein Fehler.
 - (a) Finden Sie den Fehler, und belegen Sie Ihre Erkenntnis mit einem Gegenbeispiel.
 - (b) Korrigieren Sie den Fehler, indem Sie den fraglichen Beweisteil selbst ausführen.