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11.1 Padding Lemma. Every p.r. function has infinitely many indices. In 
particular, there are strictly monotonic prim. functions f and g such that for 
every y, ϕy = ϕf(y) =ϕg(x,y). 

It is clear now how we must code configurations as numbers; and next, 
finite sequences of configurations. Moreover, we can check whether such a 
sequence codes a complete calculation of Pe. 

11.2 Normal Form Theorem (Kleene). There exists a primitive recursive 
function U, and for every n > 0, there exists a primitive recursive predicate 
Tn, such that for all x, 

ϕe
(n)(x1,…, xn) ~– U(µy Tn(e, x1,…, xn, y)). 

Comment. The definition of complete equality in terms of identity is 

M ~–   N if and only if: if M = M or N = N, then M = N. 

Proof. U counts the primes that divide the multiplicity of the greatest prime 
factor (in other words, the exponent of that factor in the prime factorization) 
of its argument just once.  

Corollary. The Turing computable partial functions are µ-recursive. 

The converse holds as well (see Kleene’s book for a proof). We take this 
final piece of evidence for the Church-Turing thesis to be conclusive: we 
have captured a natural notion of computability that every student pos-
sesses. 

12 The Enumeration and s-m-n Theorems 
In fact we need only one, programmable, Turing machine. 

12.1 Enumeration Theorem. For every n > 0, there is an index zn such that 

! 

"
zn

(n+1)
(e,x1,...,xn )  ~– 

! 

"e
(n)
(x1,...,xn ). 

By our prime product representation, not every number codes a pair. We 
will have use for a surjective pairing. Let (x, y) |—› 〈x, y〉 be one, with projec-
tions π1 and π2. Then we also have surjective tripling, with 

〈x, y, z〉 = 〈〈x, y〉, z〉, 

and so on. We apply this as a reason to make light of arities. 

12.2 s-m-n Theorem. For every m, n > 0, there exists an injective comput-
able (m + 1)-ary function sn

m such that for all x, y1,…, yn, 

! 

"
sn
m
(x,y1,...,yn )

(n)  ~– 

! 

"(z1,...,zn ).#x
(m+n)

(y1,...,ym,z1,...,zn ) . 

Example. There exists a computable function f such that ϕf(x) = 2ϕx . 

12.3 Definition. By ϕe ,s(x) = y we express that e, x and y are less than s, 
and ϕe(x) converges to y in fewer than s steps. 
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So ϕe ,s  is a finite partial function; but if it diverges, we will know. 

12.4 Theorem. The predicates ϕe ,s(x)↓ and ϕe ,s(x) = y are computable. 

Every computable partial function ϕe  is the union of a sequence of de-
cidable finite partial functions. 

13 Exercises 
:1 (a) Convince yourself that the T-predicate is computable. 
(b)* Prove that the T-predicate is primitive recursive. 
:2* Prove that the sn

m-function is primitive recursive. 

14 Unsolvable problems 
14.1 Definition. (i) A set is computably enumerable (c.e.) if it is the domain 
of a p.c. function. 
(ii) We := Domϕe = {x | ϕe(x)↓} = {x | ∃yT(e, x, y)}. 
(iii) We ,s  = Domϕe,s . 

So a computably enumerable set is a union of finite computable sets. 
Conversely, computable sets are computably enumerable. The ‘enumerable’ 
will be explained later. 

14.2 Definition. K := {x | ϕx(x) converges} = {x | x ∈ Wx}. 

14.3 Theorem. K is c.e. 

Proof. Let z1 be as in the Enumeration Theorem (12.1); let e be an index of 
λx.ϕz1(x, x). Then K = We .  

14.4 Theorem. K is not computable. 

Proof. The function f defined by 

 f(x) = ϕx(x) + 1 if x ∈ K, 
  0 otherwise 

cannot be computable.  

14.5 Definition. K0 := {〈x , y〉 | ϕx(y) converges}. 

Observe that K0 is c.e. 

14.6 Corollary (unsolvability of the halting problem). K0 is not computable. 

15 Reduction 
15.1 Definition. Let A and B be sets (of natural numbers). 
(i) A is many-one reducible (m-reducible) to B, notation A ≤m B, if there ex-
ists a computable function f such that x ∈ A ⇔ f(x) ∈ B. 
(ii) A is one-one reducible (1-reducible) to B, notation A ≤1 B, if there exists 
a 1-1 computable function f such that x ∈ A ⇔ f(x) ∈ B. 
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For example, K ≤1 K0. Observe that A ≤m B implies A– ≤m B–, by the same 
function. These reducibilities are easily seen to be reflexive and transitive, 
so ≤m ∩ ≥m and ≤1 ∩ ≥1 are equivalence relations. We denote them by ≡m 
and ≡1, respectively. The m-degree degm(A) is A /≡m; the 1-degree deg1(A) 
is A /≡1. 

15.2 Proposition. If A ≤m B and B is computable, then A is computable. 

15.3 Theorem. K ≤1 Tot := {x | Domϕx = ω}. 

Proof. There exists a 1-1 computable function f such that ϕf(x)(y) ~– ϕx(x). 
 

The proof shows that we cannot decide either whether a p.c. function is a 
constant function, or whether it is empty. Moreover, we can substitute any 
c.e. set for K. 

16 Index sets 

17 Complete sets, degrees and lattices 

18 Exercises 
:1 Suppose B = A ⊕ A– for some set A ⊂ ω. Prove B ≤1 B–. 
:2 Prove that degm(A ⊕ B) = degm(A) ∨ degm(B). 
:3 Prove that K0, K1 and K are 1-equivalent. 

 
 
 
 


