11.1 Padding Lemma. Every p.r. function has infinitely many indices. In particular, there are strictly monotonic prim. functions *f* and *g* such that for every *y*, $\varphi_y = \varphi_{f(y)} = \varphi_{g(x,y)}$.

It is clear now how we must code configurations as numbers; and next, *finite sequences* of configurations. Moreover, we can check whether such a sequence codes a complete calculation of P_e .

11.2 Normal Form Theorem (*Kleene*). There exists a primitive recursive function U, and for every n > 0, there exists a primitive recursive predicate T_n , such that for all x,

 $\varphi_e^{(n)}(x_1,...,x_n) \simeq U(\mu y T_n(e, x_1,...,x_n, y)).$

Comment. The definition of complete equality in terms of identity is

 $M \simeq N$ if and only if: if M = M or N = N, then M = N.

Proof. U counts the primes that divide the multiplicity of the greatest prime factor (in other words, the exponent of that factor in the prime factorization) of its argument just once.

Corollary. The Turing computable partial functions are μ -recursive.

The converse holds as well (see Kleene's book for a proof). We take this final piece of evidence for the Church-Turing thesis to be conclusive: we have captured a natural notion of computability that every student possesses.

12 The Enumeration and s-m-n Theorems

In fact we need only one, programmable, Turing machine.

12.1 Enumeration Theorem. For every n > 0, there is an index z_n such that

$$\varphi_{Z_n}^{(n+1)}(e, x_1, ..., x_n) \simeq \varphi_e^{(n)}(x_1, ..., x_n).$$

By our prime product representation, not every number codes a pair. We will have use for a *surjective* pairing. Let $(x, y) \mapsto \langle x, y \rangle$ be one, with projections π_1 and π_2 . Then we also have surjective tripling, with

$$\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$$

and so on. We apply this as a reason to make light of arities.

12.2 s-m-n Theorem. For every m, n > 0, there exists an injective computable (m + 1)-ary function s_n^m such that for all x, y_1, \dots, y_n ,

$$\varphi_{s_n^m(x,y_1,...,y_n)}^{(n)} \simeq \lambda(z_1,...,z_n) . \varphi_x^{(m+n)}(y_1,...,y_m,z_1,...,z_n).$$

Example. There exists a computable function *f* such that $\varphi_{f(x)} = 2\varphi_x$.

12.3 Definition. By $\varphi_{e,s}(x) = y$ we express that e, x and y are less than s, and $\varphi_e(x)$ converges to y in fewer than s steps.

So $\varphi_{e,s}$ is a finite partial function; but if it diverges, we will know.

12.4 Theorem. The predicates $\varphi_{e,s}(x) \downarrow$ and $\varphi_{e,s}(x) = y$ are computable.

Every computable partial function φ_e is the union of a sequence of decidable finite partial functions.

13 Exercises

:1 (a) Convince yourself that the *T*-predicate is computable.

(b)* Prove that the *T*-predicate is primitive recursive.

:2* Prove that the s_n^m -function is primitive recursive.

14 Unsolvable problems

14.1 Definition. (i) A set is *computably enumerable* (*c.e.*) if it is the domain of a p.c. function.

(ii) $W_e := \operatorname{Dom} \varphi_e = \{x \mid \varphi_e(x) \downarrow\} = \{x \mid \exists y T(e, x, y)\}.$

(iii) $W_{e,s} = \text{Dom}\,\varphi_{e,s}$.

So a computably enumerable set is a union of finite computable sets. Conversely, computable sets are computably enumerable. The 'enumerable' will be explained later.

14.2 Definition. $K := \{x | \varphi_x(x) \text{ converges}\} = \{x | x \in W_x\}.$

14.3 Theorem. K is c.e.

Proof. Let z_1 be as in the Enumeration Theorem (12.1); let *e* be an index of $\lambda x. \varphi_{z_1}(x, x)$. Then $K = W_e$.

14.4 Theorem. *K* is not computable.

Proof. The function *f* defined by

$$f(x) = \varphi_x(x) + 1 \text{ if } x \in K,$$

0 otherwise

cannot be computable.

14.5 Definition. $K_0 := \{ \langle x, y \rangle | \varphi_x(y) \text{ converges} \}.$

Observe that K_0 is c.e.

14.6 Corollary (*unsolvability of the halting problem*). K_0 is not computable.

15 Reduction

15.1 Definition. Let *A* and *B* be sets (of natural numbers).

(i) *A* is *many-one reducible* (*m-reducible*) to *B*, notation $A \leq_m B$, if there exists a computable function *f* such that $x \in A \Leftrightarrow f(x) \in B$.

(ii) A is one-one reducible (1-reducible) to B, notation $A \leq_1 B$, if there exists

a 1-1 computable function *f* such that $x \in A \Leftrightarrow f(x) \in B$.

X

For example, $K \leq_1 K_0$. Observe that $A \leq_m B$ implies $\overline{A} \leq_m \overline{B}$, by the same function. These reducibilities are easily seen to be reflexive and transitive, so $\leq_m \cap \geq_m$ and $\leq_1 \cap \geq_1$ are equivalence relations. We denote them by \equiv_m and \equiv_1 , respectively. The *m*-degree deg_m(A) is A/\equiv_m ; the 1-degree deg₁(A) is A/\equiv_1 .

15.2 Proposition. If $A \leq_m B$ and *B* is computable, then *A* is computable.

15.3 Theorem. $K \leq_1 \text{Tot} := \{x \mid \text{Dom } \varphi_x = \omega\}.$

Proof. There exists a 1-1 computable function *f* such that $\varphi_{f(x)}(y) \simeq \varphi_x(x)$.

The proof shows that we cannot decide either whether a p.c. function is a constant function, or whether it is empty. Moreover, we can substitute any c.e. set for K.

16 Index sets

17 Complete sets, degrees and lattices

18 Exercises

- :1 Suppose $B = A \oplus \overline{A}$ for some set $A \subset \omega$. Prove $B \leq_1 \overline{B}$.
- :2 Prove that $\deg_{m}(A \oplus B) = \deg_{m}(A) \vee \deg_{m}(B)$.
- :3 Prove that K_0 , K_1 and K are 1-equivalent.