
 9 

11.1 Padding Lemma. Every p.r. function has infinitely many indices. In 
particular, there are strictly monotonic prim. functions f and g such that for 
every y, ϕy = ϕf(y) =ϕg(x,y). 

It is clear now how we must code configurations as numbers; and next, 
finite sequences of configurations. Moreover, we can check whether such a 
sequence codes a complete calculation of Pe. 

11.2 Normal Form Theorem (Kleene). There exists a primitive recursive 
function U, and for every n > 0, there exists a primitive recursive predicate 
Tn, such that for all x, 

ϕe
(n)(x1,…, xn) ~– U(µy Tn(e, x1,…, xn, y)). 

Comment. The definition of complete equality in terms of identity is 

M ~–   N if and only if: if M = M or N = N, then M = N. 

Proof. U counts the primes that divide the multiplicity of the greatest prime 
factor (in other words, the exponent of that factor in the prime factorization) 
of its argument just once.  

Corollary. The Turing computable partial functions are µ-recursive. 

The converse holds as well (see Kleene’s book for a proof). We take this 
final piece of evidence for the Church-Turing thesis to be conclusive: we 
have captured a natural notion of computability that every student pos-
sesses. 

12 The Enumeration and s-m-n Theorems 
In fact we need only one, programmable, Turing machine. 

12.1 Enumeration Theorem. For every n > 0, there is an index zn such that 

! 

"
zn

(n+1)
(e,x1,...,xn )  ~– 

! 

"e
(n)
(x1,...,xn ). 

By our prime product representation, not every number codes a pair. We 
will have use for a surjective pairing. Let (x, y) |—› 〈x, y〉 be one, with projec-
tions π1 and π2. Then we also have surjective tripling, with 

〈x, y, z〉 = 〈〈x, y〉, z〉, 

and so on. We apply this as a reason to make light of arities. 

12.2 s-m-n Theorem. For every m, n > 0, there exists an injective comput-
able (m + 1)-ary function sn

m such that for all x, y1,…, yn, 

! 

"
sn
m
(x,y1,...,yn )

(n)  ~– 

! 

"(z1,...,zn ).#x
(m+n)

(y1,...,ym,z1,...,zn ) . 

Example. There exists a computable function f such that ϕf(x) = 2ϕx . 

12.3 Definition. By ϕe ,s(x) = y we express that e, x and y are less than s, 
and ϕe(x) converges to y in fewer than s steps. 
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So ϕe ,s  is a finite partial function; but if it diverges, we will know. 

12.4 Theorem. The predicates ϕe ,s(x)↓ and ϕe ,s(x) = y are computable. 

Every computable partial function ϕe  is the union of a sequence of de-
cidable finite partial functions. 

13 Exercises 
:1 (a) Convince yourself that the T-predicate is computable. 
(b)* Prove that the T-predicate is primitive recursive. 
:2* Prove that the sn

m-function is primitive recursive. 

14 Unsolvable problems 
14.1 Definition. (i) A set is computably enumerable (c.e.) if it is the domain 
of a p.c. function. 
(ii) We := Domϕe = {x | ϕe(x)↓} = {x | ∃yT(e, x, y)}. 
(iii) We ,s  = Domϕe,s . 

So a computably enumerable set is a union of finite computable sets. 
Conversely, computable sets are computably enumerable. The ‘enumerable’ 
will be explained later. 

14.2 Definition. K := {x | ϕx(x) converges} = {x | x ∈ Wx}. 

14.3 Theorem. K is c.e. 

Proof. Let z1 be as in the Enumeration Theorem (12.1); let e be an index of 
λx.ϕz1(x, x). Then K = We .  

14.4 Theorem. K is not computable. 

Proof. The function f defined by 

 f(x) = ϕx(x) + 1 if x ∈ K, 
  0 otherwise 

cannot be computable.  

14.5 Definition. K0 := {〈x , y〉 | ϕx(y) converges}. 

Observe that K0 is c.e. 

14.6 Corollary (unsolvability of the halting problem). K0 is not computable. 

15 Reduction 
15.1 Definition. Let A and B be sets (of natural numbers). 
(i) A is many-one reducible (m-reducible) to B, notation A ≤m B, if there ex-
ists a computable function f such that x ∈ A ⇔ f(x) ∈ B. 
(ii) A is one-one reducible (1-reducible) to B, notation A ≤1 B, if there exists 
a 1-1 computable function f such that x ∈ A ⇔ f(x) ∈ B. 
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For example, K ≤1 K0. Observe that A ≤m B implies A– ≤m B–, by the same 
function. These reducibilities are easily seen to be reflexive and transitive, 
so ≤m ∩ ≥m and ≤1 ∩ ≥1 are equivalence relations. We denote them by ≡m 
and ≡1, respectively. The m-degree degm(A) is A /≡m; the 1-degree deg1(A) 
is A /≡1. 

15.2 Proposition. If A ≤m B and B is computable, then A is computable. 

15.3 Theorem. K ≤1 Tot := {x | Domϕx = ω}. 

Proof. There exists a 1-1 computable function f such that ϕf(x)(y) ~– ϕx(x). 
 

The proof shows that we cannot decide either whether a p.c. function is a 
constant function, or whether it is empty. Moreover, we can substitute any 
c.e. set for K. 

16 Index sets 

17 Complete sets, degrees and lattices 

18 Exercises 
:1 Suppose B = A ⊕ A– for some set A ⊂ ω. Prove B ≤1 B–. 
:2 Prove that degm(A ⊕ B) = degm(A) ∨ degm(B). 
:3 Prove that K0, K1 and K are 1-equivalent. 

 
 
 
 


