11.1 Padding Lemma. Every p.r. function has infinitely many indices. In

particular, there are strictly monotonic prim. functions f and g such that for
CVELY Y. @y = %f(y) =Pg(x.y)

It is clear now how we must code configurations as numbers; and next,
finite sequences of configurations. Moreover, we can check whether such a

sequence codes a complete calculation of P,.

11.2 Normal Form Theorem (Kleene). There exists a primitive recursive
function U, and for every n > 0, there exists a primitive recursive predicate
T,,, such that for all x,
(pé”)(xl,..., x,) =U(uy T,(e, xq,..., X, ).
Comment. The definition of complete equality in terms of identity is
M=~Nifandonlyif: if M =M or N=N, then M = N.
Proof. U counts the primes that divide the multiplicity of the greatest prime

factor (in other words, the exponent of that factor in the prime factorization)

of its argument just once.
Corollary. The Turing computable partial functions are p-recursive.

The converse holds as well (see Kleene’s book for a proof). We take this
final piece of evidence for the Church-Turing thesis to be conclusive: we
have captured a natural notion of computability that every student pos-

SESSES.

12 The Enumeration and s-m-n Theorems

In fact we need only one, programmable, Turing machine.

12.1 Enumeration Theorem. For every n > 0, there is an index z,, such that

<p§’;+1)(e,x1,...,xn) ~ (p(g")(xl,...,xn).

By our prime product representation, not every number codes a pair. We
will have use for a surjective pairing. Let (x, y) — (x, y) be one, with projec-

tions sy and m,. Then we also have surjective tripling, with

*x, ¥, 2) = {(x, »), 2),

and so on. We apply this as a reason to make light of arities.

12.2 s-m-n Theorem. For every m, n > 0, there exists an injective comput-

able (m + 1)-ary function s)" such that for all x, yy,..., y,,
(n)

e = M2 Z) DT (Vseoer Vs L)
Sn (x7y]""’yn)

Example. There exists a computable function f such that Pfx) = 2¢,.

12.3 Definition. By ¢, ((x) =y we express that e, x and y are less than s,

and @,(x) converges to y in fewer than s steps.
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So @, ¢ is a finite partial function; but if it diverges, we will know.
12.4 Theorem. The predicates ¢, ()| and @, s(x) =y are computable.

Every computable partial function ¢, is the union of a sequence of de-

cidable finite partial functions.

13 Exercises
:1 (a) Convince yourself that the 7-predicate is computable.
(b)* Prove that the T-predicate is primitive recursive.

:2* Prove that the s/”*-function is primitive recursive.

14 Unsolvable problems
14.1 Definition. (i) A set is computably enumerable (c.e.) if it is the domain

of a p.c. function.
(i) W, := Domg, = {x| g0} = {x1 HT(e, x, )}
(iii) W, ;¢ = Domg, ;.
So a computably enumerable set is a union of finite computable sets.

Conversely, computable sets are computably enumerable. The ‘enumerable’

will be explained later.

14.2 Definition. K := {x| ¢, (x) converges} = {x| x € W}.

14.3 Theorem. K is c.e.

Proof. Let z; be as in the Enumeration Theorem (12.1); let e be an index of
Ax.@, (x, x). Then K = W,.
14.4 Theorem. K is not computable.

Proof. The function f defined by

=g +1ifxEK,
0 otherwise

cannot be computable.
14.5 Definition. K, := {{x, y)| ¢, (y) converges}.
Observe that K| is c.e.

14.6 Corollary (unsolvability of the halting problem). Ky is not computable.

15 Reduction

15.1 Definition. Let A and B be sets (of natural numbers).

(1) A is many-one reducible (m-reducible) to B, notation A <, B, if there ex-
ists a computable function f'such that x E A < f(x) € B.

(i1) A is one-one reducible (1-reducible) to B, notation A < B, if there exists

a 1-1 computable function f such that x E A < f(x) € B.
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For example, K < K. Observe that A <., B implies A <, B, by the same
function. These reducibilities are easily seen to be reflexive and transitive,
so <, M =, and <; M 2; are equivalence relations. We denote them by =,
and =, respectively. The m-degree deg, (A) is A/=,; the 1-degree deg,(A)
1s A/=.

15.2 Proposition. If A <, B and B is computable, then A is computable.
15.3 Theorem. K <; Tot := {x| Dom ¢, = w}.

Proof. There exists a 1-1 computable function f such that @ x)(y) = @ (x).
The proof shows that we cannot decide either whether a p.c. function is a
constant function, or whether it is empty. Moreover, we can substitute any

c.e. set for K.
16 Index sets
17 Complete sets, degrees and lattices

18 Exercises

:1 Suppose B=A @ A for some set A C . Prove B <; B.
:2 Prove that deg (A ® B) = deg(A) v deg,(B).

:3 Prove that K, K| and K are 1-equivalent.
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